Characterization of sol-gel Pb(Zr0.53Ti0.47)O3 films in the thickness range 0.25–10 μm

1999 ◽  
Vol 14 (5) ◽  
pp. 1852-1859 ◽  
Author(s):  
Rajnish Kurchania ◽  
Steven J. Milne

Films of nominal composition Pb(Zr0.53Ti0.47)O3 (PZT) in the thickness range 0.25−10 μm have been fabricated on Pt/Ti/SiO2/Si substrates using a propanediol-based sol-gel route. The spun-on coatings were prefired at 350 and 600 °C between successive depositions before firing the multilayer stack at 700 °C for 15 min. The variations in crystallite orientation, microstructure, and dielectric and ferroelectric properties were determined as a function of film thickness. For a constant applied field of 150 kV cm−1, remanent polarization decreased progressively from 35 to 17 μC cm−2 as film thickness decreased in the range 10–0.25 μm; values of coercive field were reasonably constant, 18–19 kV cm−1, for films between 2 and 10 μm, but increased sharply below 2 μm, reaching 46 kV cm−1 for a 0.25 μm film. Relative permittivity (εr) decreased from approximately 1400 to approximately 940 with most of the reduction occurring in films less than 2 μm in thickness. These trends are discussed in terms of the presumed influence of interfacial phenomena on the measured electrical response.

2012 ◽  
Vol 1449 ◽  
Author(s):  
Dan Jiang ◽  
Chen Zhao ◽  
Shundong Bu ◽  
Jinrong Cheng

ABSTRACTPb(Zr0.53Ti0.47)O3 (PZT) films have been fabricated on stainless steel substrates by a Polyvinylpirrolidone (PVP) modified sol-gel route. The single layer of about 0.26 μm was achieved by using the PVP-modified PZT sol, and Crack-free PZT films with thickness of up to 2.37 μm were fabricated by repeating the deposition process. The variations in crystallite orientation, microstructure, dielectric and ferroelectric properties of PZT films were investigated as a function of film thickness. Our results indicate that PZT films prepared on stainless steel substrates maintain good dielectric and ferroelectric properties.


2011 ◽  
Vol 197-198 ◽  
pp. 1781-1784
Author(s):  
Hua Wang ◽  
Jian Li ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Shang Ju Zhou

Intergrowth-superlattice-structured SrBi4Ti4O15–Bi4Ti3O12(SBT–BIT) films prepared on p-Si substrates by sol-gel processing. Synthesized SBT–BIT films exhibit good ferroelectric properties. As the annealing temperature increases from 600°C to 700°C, the remanent polarization Prof SBT–BIT films increases, while the coercive electric field Ecdecreases. SBT–BIT films annealed at 700°C have a Prvalue of 18.9µC/cm2which is higher than that of SBT (16.8µC/cm2) and BIT (14.6µC/cm2), and have the lowest Ecof 142 kV/cm which is almost the same as that of SBT and BIT. The C-V curves of Ag/SBT-BIT/p-Si heterostructures show the clockwise hysteresis loops which reveal the memory effect due to the polarization. The memory window in C-V curve of Ag/SBT-BIT/p-Si is larger than that of Ag/SBT/p-Si heterostructure or Ag/BIT/p-Si heterostructure.


2008 ◽  
Vol 368-372 ◽  
pp. 100-102 ◽  
Author(s):  
Su Hua Fan ◽  
Jing Xu ◽  
Guang Da Hu ◽  
Bo He ◽  
Feng Qing Zhang

Ca1-xSrxBi4Ti4O15 thin films were fabricated by sol-gel method on Pt(100)/Ti/SiO2/Si substrates. Influence of Sr content on the microstructure and ferroelectric properties of Ca1-xSrxBi4Ti4O15 thin films were systematically studied. The results indicate that Ca0.4Sr0.6Bi4Ti4O15 thin film has better ferroelectric properties with remanent polarization (2Pr) of 29.1+C/cm2, coercive field (2Ec) of 220 kV/cm. Furthermore, the film has good fatigue resistance. The better ferroelectric properties of Ca0.4Sr0.6Bi4Ti4O15 thin film originate from the relatively high concentration of a-axis oriented grains.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3404-3411
Author(s):  
M. C. KAO ◽  
H. Z. CHEN ◽  
S. L. YOUNG ◽  
C. C. LIN ◽  
C. C. YU

LiTaO 3 thin films were deposited on Pt / Ti / SiO 2/ Si substrates by means of a sol-gel spin-coating technology and rapid thermal annealing (RTA). The influence of various annealing treatments on the characteristics of the thin films were studied by varying the single-annealed-layer thickness (50 ~ 200 nm ) and heating temperatures (500 ~ 800° C ) of the samples. Experimental results reveal that the single-annealed-layer strongly influences grain size, dielectricity and ferroelectricity of LiTaO 3 thin films. The grain size of LiTaO 3 thin film decreases slightly with increasing thickness of the single-annealed-layer, and highly c-axis orientated LiTaO 3 films can be obtained for a single-annealed-layer of 50 nm. When the thickness of the single-annealed-layer was increased from 50 to 200 nm, the relative dielectric constant of LiTaO 3 thin film decreased from 65 to 35, but the dielectric loss factor (tanδ) was increased. The LiTaO 3 films with the single-annealed-layer of 50 nm showed excellent ferroelectric properties in terms of a remanent polarization ( P r) of 12.3 μ C /cm2 (Ec ∼ 60 kV/cm), and a low current density of 5.2×l0-8 A /cm2 at 20 kV/cm.


2002 ◽  
Vol 718 ◽  
Author(s):  
Ching-Chich Leu ◽  
Chao-Hsin Chien ◽  
Ming-Jui Yang ◽  
Ming-Che Yang ◽  
Tiao-Yuan Huang ◽  
...  

AbstractThe effects of a seeding layer, which was deposited on Pt/TiO2/SiO2/Si substrates using magnetron sputtering, on the characteristics of sol-gel-deposited strontium-bismuth-tantalate (SBT) thin films are investigated. The seeding layer serves as nucleation sites so homogeneous crystalline SBT films of bismuth-layered structure (BLS) with fine grains are successfully obtained by 750°C rapid thermal annealing in O2 ambient. The remanent polarization (2Pr) improves from 12.1 to 18.8 μC/cm2 with the addition of the seeding layer. In addition, the seeding layer also results in a lower nucleation temperature, allowing the use of 700°C annealing for 10 min to grow SBT films that are fully crystallized with BLS phase and shows good ferroelectric properties. Finally, crystallinity and microstructures of SBT films are found to be strongly dependent on the thickness of the seeding layer. Optimum Ta-seeded SBT thin film crystallized at 700°C for 10min depicts a higher 2Pr value (12.9 μC/cm2 (@5V) than that of the un-seeded films crystallized at 750°C for 1min.


2007 ◽  
Vol 336-338 ◽  
pp. 146-148
Author(s):  
Y.H. Sun ◽  
X.B. Liu ◽  
Min Chen ◽  
J. Liu ◽  
S. Chen ◽  
...  

Nd-doped bismuth titanate Bi4-xNdxTi3O12 (BNT) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol-gel method and spin-coating technique. The structures and the ferroelectric properties of the films were investigated. Nd doping leads to a marked improvement in the remanent polarization (Pr) and the coercive field (Ec). At the applied electric field of 260 kV/cm, Pr and Ec of the BNT film with x=0.5 annealed at 650oC are 19 μC/cm2 and 135 kV/cm, respectively. Moreover, the BNT film with x=0.5 showed a fatiguefree behavior up to 3×1010 read/write cycles.


1996 ◽  
Vol 433 ◽  
Author(s):  
G. Teowee ◽  
K.C. McCarthy ◽  
E.K. Franke ◽  
J.M. Boulton ◽  
T.P. Alexander ◽  
...  

AbstractA series of sol-gel derived CaTiO3- PbTiO3 thin films ( i.e. Pb1−xCaxTiO3 with x = 0 − 1) was prepared on platinized Si substrates and fired to temperatures ranging from 550C to 650C. Multiple spincoating was performed to obtain films up to 0.5 μm thick with an intermediate firing of 400C between coatings. After the final crystallization firing, top Pt electrodes were sputtered to form monolithic capacitors. These capacitors were subjected to dielectric and ferroelectric characterization using an impedance analyzer and Radiant Technology RT66A Ferroelectric Test System. XRD was used to study the phase development and phase assembly of the fired films. All compositions were single perovskite phase after firing to 600C. The effects of Ca content on the crystallization behavior and ferroelectric properties are discussed.


2014 ◽  
Vol 633 ◽  
pp. 378-381
Author(s):  
Bei Li ◽  
X.B. Liu ◽  
M. Chen ◽  
X.A. Mei

Dy-doped Bi4Ti3O12 thin films were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition technique, and the structures and electrical properties of the films were investigated. XRD results indicated that all of Bi4-xDyxTi3O12 films consisted of single phase of a bismuth-layered structure with well-developed rod-like grains. The remanent polarization ( Pr ) and coercive field (Ec) of the Bi4-xDyxTi3O12 Film with x=0.75 were 25μC/cm2 and 85KV/cm , respectively.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 769-773 ◽  
Author(s):  
M. GARCIA-ROCHA ◽  
A. CONDE-GALLARDO ◽  
I. HERNANDEZ-CALDERON ◽  
R. PALOMINO-MERINO

In this work we show the results on tile growth and optical characterization of TiO 2 thin films doped with Eu atoms. Eu:TiO2 films were grown at room temperature with different Eu concentrations by sol-gel on Si Corning glass substrates. A different crystalline structure is developed for the films deposited on Corning glass than those deposited on Si as observed from x-ray diffraction experiments. Room and low temperature photoluminescence (PL) was measured by using two different lines (325 and 442 nm) of a HeCd laser. A strong PL signal associated to the 5 D 0→7 F 2 transition from Eu +3 was observed. A better emission was obtained from those films deposited on Si substrates, Finally, the evolution of the PL signal is studied when the samples are annealed at different temperatures in O 2 atmosphere.


Sign in / Sign up

Export Citation Format

Share Document