Comprehensive Characterization of Neat Polymers and Compositional Imaging Heterogeneous Polymer Systems with AFM Based Mechanical, Electric and Spectroscopic Methods

2015 ◽  
Vol 1754 ◽  
pp. 75-80
Author(s):  
Marko Surtchev ◽  
Sergey Belikov ◽  
Ivan Malovichko ◽  
Sergei Magonov

ABSTRACTComprehensive characterization of materials suggests measuring their different properties for optimal use in technological applications and this task becomes more challenging as size of related structures decreases and their complexity increases. At smaller scales Atomic Force Microscopy (AFM) enables visualization of structures and quantitative measurements of their mechanical and electric properties. So far, several properties such as elastic modulus and work of adhesion, surface potential and dielectric permittivity can be extracted from the results obtained in various AFM modes. More complicated are the AFM experiments and their analysis in case of viscoelastic, piezoelectric and thermoelectric properties. Several examples of quantitative characterization of neat polymers will be given. In many cases the dissimilarity of the components’ properties is employed for their recognition in heterogeneous systems such as polymer blends, block copolymers and metal alloys. The confined geometries, which are common for small-scale structures, might restrict such identification and a combination of AFM with spectral methods such as Raman scattering will be helpful. Achievements and challenges of compositional mapping will be illustrated on several complex materials.

MRS Advances ◽  
2016 ◽  
Vol 1 (25) ◽  
pp. 1859-1864 ◽  
Author(s):  
Marko Surtchev ◽  
Mark Wall ◽  
Sergei Magonov

ABSTRACTCompositional imaging of several immiscible polymer blends was examined with the combination of AFM-based mechanical and electric modes with chemically-specific Raman mapping. Results showed that these methods substantially complement each other in comprehensive characterization of surface morphology by helping to identify a composition of top surface and sub-surface materials in polymer heterogeneous systems.


2014 ◽  
Vol 783-786 ◽  
pp. 2327-2332
Author(s):  
J.S. Lecomte ◽  
L.T. Nguyen ◽  
F. Abbès ◽  
C. Schuman ◽  
J.M. Raulot

This study combines nanoindentation experiments, electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) topographic measurements to investigate the material anisotropy contribution to the indentation behaviour of individual grains of various hexagonal-close packed (HCP) polycrystals with different axial ratio (zinc, magnesium and titanium). The grain size was much larger than the indents size to ensure quasi-single-crystal indentation and when, combined with an EBSD mapping, a wide variety of crystal orientations can be probed, which provides mechanical characterization of materials at the micro/nanoscale. Experimental curves can be used to determine the mechanical properties of the indented material. Furthermore, by using data issued from AFM topographic measurements, one can analyze the dislocations arrangements below and around the indentation print, and thus characterize the most probably activated deformation systems.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document