Synthesis of Nanocarbons Using a Large Volume AC Plasma Reactor

2015 ◽  
Vol 1747 ◽  
Author(s):  
M. Hamady ◽  
D. Sheppard ◽  
K. Seddighi ◽  
A. Sarawagi ◽  
B. Scott ◽  
...  

ABSTRACTThere is an opportunity for scaling up, optimizing, and controlling the process of production of nanoparticles due to their numerous diverse applications. We present a system for continuous, high rate production of nanoparticles, particularly those of carbon, using large volume thermal plasma based on a three-phase diverging electrode configuration. The goal of using this 3-phase plasma reactor is to have a plasma arc that is scalable, self-stabilizing, and low maintenance, with sufficient plasma volume to maximize residence time of feed materials for evaporation to atomic species. Plasma carrier gas, typically inert gas such as helium, is injected into the reactor allowing the vaporization of any feedstock due to plasma temperatures >5000 °C. Controlling plasma enthalpy, diffusion/temperature gradients and carbon feed rates allow the controlled growth of clusters leading to nanoparticles less than 100 nm. Once the desired size is achieved the gas stream is expanded to reduce the reaction rate and quenched by natural cooling to chamber walls or injection of a cooling gas stream, preferably of the same composition as plasma carrier gas. Recoverable yields in the nanoparticle-laden gas stream are then isolated by standard means (filtration, cyclone separation, electrostatic precipitation), and the plasma gas and unreacted feedstock are routed to the plasma reactor for recycling. Computational Fluid Dynamics (CFD) is employed to measure and predict fluid flow, energy/temperature, and other species distributions in the plasma process.

1993 ◽  
Vol 28 (8-9) ◽  
pp. 199-208 ◽  
Author(s):  
J.-Y. Ding ◽  
S.-C. Wu

In this study experiments simulating sediment/water system were carried on with sediments spiked with aldrin, heptachlor epoxide and p,p'-DDE. It was expected that these hydrophobic contaminants would be released to the overlying water column from sediment bed with molecular diffusion and co-diffusion with dissolved organic matter (DOM) as well. A three-phase-transport model including aqueous, solid and mobile adsorptive phases was developed and used to describe the behavior of these contaminants and to explain the results of the experiments. Sensitivity analyses show that observable effects of DOM occur only under conditions of high partition coefficient (Koc) of the contaminant and high rate of transfer from sediment organic matter to DOM. In this study, owing to the low concentration of DOM and relatively low hydrophobicity of the compounds, the DOM-associated pollutant flux does not significantly contribute to the total flux. Also, the simulated results of the model can reasonably explain the variations of the concentrations of the spiked compounds observed in the microcosms.


1999 ◽  
Vol 605 ◽  
Author(s):  
H. Ashraf ◽  
J. K. Bhardwaj ◽  
E. Guibarra ◽  
S. Hall ◽  
J. Hopkins ◽  
...  

AbstractIn high-density fluorinated plasma processes, the mechanisms that fundamentally limit the etching of silicon are poorly understood. In an effort to improve our understanding of limits to the performance of such systems, the etching of silicon wafers in an inductive coupled plasma reactor, using SF6, has been studied. A systematic empirical investigation has allowed us to define many of the experimental parameters that control the etching rate.There is little temperature dependence of etching which suggests a diffusion limited process. Systematic variation of parameters controlling the rate of etching: total pressure in the reactor, flow rate, partial pressure of reactive species and the rf power supplied to the discharge enable us to accurately define the performance of the system. Experiments, which segregate the physical and chemical components of the etching process, support the conclusion that etching is dominated by electrically neutral species. These various results are interpreted in terms of accepted models for the reactive chemistry in plasmas containing SF6.The MEMS industry is placing ever greater demands on etching processes, and there is a need to achieve the high degrees of anisotropy, and critical dimension control, at high etch-rates. The approach outlined allows us to develop effective strategies for evolving improved systems for the high rate plasma etching of silicon.


2012 ◽  
Vol 548 ◽  
pp. 153-159
Author(s):  
Mohammad Kazemeini ◽  
Masoud Habibi Zare ◽  
Nora Safabakhsh ◽  
Shadi Roshdi Ferdosi ◽  
Moslem Fattahi

In this study, mathematical modelling of oxidative coupling of methane (OCM) to C2hydrocarbons (C2H6and C2H4) over La2O3/CaO catalyst in a fixed-bed reactor operated under isothermal and non-isothermal conditions was investigated using the MATLAB program. In this process, methane and acetylene were the inputted feed and ethane, ethylene, propylene, propane, i-butane and n-butane were the output products. The amount of methane conversion obtained was 12.7% for the former feed however; if pure methane was inputted this conversion rose to 13.8%. Furthermore, the plasma process would enhance the conversion, selectivity towards desired product and process yield. A comparison between the thermal and the plasma process showed that the methane conversion and production yield in the plasma were higher than in the thermal process under the same operating conditions. Finally, the results of the catalytic OCM and methane conversion processes in the plasma phase were compared with one another.


Author(s):  
A. Anusha ◽  
◽  
Dr. K. Kishore Raju ◽  

Due to the emergence of a new infectious disease (COVID-19), the worldwide data volume has been quickly increasing at a very high rate during the last two years. Due its infectious, and importance, in this paper, K-Means clustering procedure is applied on COVID data in MapReduce based distributed computing environment. The proposed system is store, process and tests the large volume of COVID-19 data. Experimental results had been proved that this process is adaptable to COVID-19 data in the formation of trusted clusters.


Sign in / Sign up

Export Citation Format

Share Document