Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence

2015 ◽  
Vol 1792 ◽  
Author(s):  
Toshiya Yokogawa ◽  
Masaki Fujikane ◽  
Shijo Nagao ◽  
Roman Nowak

ABSTRACTYield shear stress dependence on dislocation density and crystal orientation was studied in bulk GaN crystals by nanoindentation examination. The yield shear stress decreased with increasing dislocation density which is estimated by dark spot density in cathodoluminescence, and it decreased with decreasing nanoindentation strain-rate. It reached and coincided at 11.5 GPa for both quasi-static deformed c-plane (0001) and m-plane (10-10) GaN. Taking into account theoretical Peierls–Nabarro stress and yield stress for each slip system, these phenomena were concluded to be an evidence of heterogeneous mechanism associated plastic deformation in GaN crystal. Transmission electron microscopy and molecular dynamics simulation also supported the mechanism with obtained r-plane (-1012) slip line right after plastic deformation, so called pop-in event. The agreement of the experimentally obtained atomic shuffle energy with the calculated twin boundary energy suggested that the nucleation of the local metastable twin boundary along the r-plane concentrated the indentation stress, leading to an r-plane slip. This nanoindentation examination is useful for the characterization of crystalline quality because the wafer mapping of the yield shear stress coincided the photoluminescence mapping which shows increase of emission efficiency due to reduction of non-radiative recombination process by dislocation.

2012 ◽  
Vol 186 ◽  
pp. 331-334
Author(s):  
Mateusz Kopyściański ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research characterizes the changes in microstructure that occur in friction stir welded extrusions of a novel 7042 aluminum alloy. Due to the presence of scandium the base material preserved the deformation microstructure with elongated grains and fairly high dislocation density. The temperature increase with simultaneous severe plastic deformation occurring during friction stir welding induced significant changes in the microstructure within the weld and its vicinity. The weld center (stir zone) was composed of fine equiaxed grains with residual dislocations and a modest density of small precipitates compared to the neighbouring thermomechanically and heat affected zones where the density of small precipitates was much higher.


2000 ◽  
Vol 634 ◽  
Author(s):  
R. Tarumi ◽  
A. Ogura ◽  
M. Shimojo ◽  
K. Takashima ◽  
Y. Higo

ABSTRACTAn NTP ensemble molecular dynamics simulation was carried out to investigate the mechanism of nano-sized crystallization during plastic deformation in an amorphous metal. The atomic system used in this study was Ni single component. The total number of Ni atoms was 1372. The Morse type inter-atomic potential was employed. An amorphous model was prepared by a quenching process from the liquid state. Pure shear stresses were applied to the amorphous model at a temperature of 50 K. At applied stresses of less than 2.4GPa, a linear relation between shear stress and shear strain was observed. However, at an applied shear stress of 2.8 GPa, the amorphous model started to deform significantly until shear strain reached to 0.78. During this deformation process, phase transformation from amorphous into crystalline structure (fcc) was observed. Furthermore, an orientation relationship between shear directions and crystalline phase was obtained, that is, two shear directions are parallel to a (111) of the fcc structure. This crystallographic orientation relationship agreed well with our experimental result of Ni-P amorphous alloy. Mechanisms of phase transformation from amorphous into crystalline structure were discussed.


2011 ◽  
Vol 8 (2) ◽  
pp. 429-431 ◽  
Author(s):  
Masaki Fujikane ◽  
Toshiya Yokogawa ◽  
Shijo Nagao ◽  
Roman Nowak

1990 ◽  
Vol 216 ◽  
Author(s):  
M. Aydaraliev ◽  
T.S. Argunova ◽  
N.V. Zotova ◽  
S.A. Karandashov ◽  
R.N. Kutt ◽  
...  

The band gap of InAsSbP and InGaAsSb alloys enriched with InAs correspods to the spectral range 2.5 - 5 μm which make possible to manufacture LEDs and detectors for the second atmosphere window. Elevated hardness (see Fig.1a ) and small plasticity of the alloys results in an inversed plastic deformation process during LPE growth of InAsSbP (InGaAsSb) on InAs substrate.That is when growing graded( grad a ≈5*10−8 epilayers at elevated temperatures ( 680 - 720° C ) misfit dislocations are formed throughout the entire substrate thickness (C). Simultaneously with increasing dislocation density in InAs ( curves 1,3 ), the curvature of the structure increased within æ = 0.02-0.2 cm−1.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2001 ◽  
Author(s):  
Venkataraman Chandrasekaran ◽  
Anthony Cain ◽  
Toshikazu Nishida ◽  
Louis Cattafesta ◽  
Mark Sheplak

Sign in / Sign up

Export Citation Format

Share Document