Breast cancer detection using charge sensors coupled to DNA monolayer

2015 ◽  
Vol 1793 ◽  
pp. 19-26
Author(s):  
Marina R. Batistuti ◽  
Marcelo Mulato ◽  
Paulo R. Bueno

ABSTRACTWe report the development of a label-free biosensors based on DNA hybridization, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This study uses DNA sequences based on microRNA related with breast cancer. The biosensor was fabricated by immobilizing a self-assembled monolayer of single-stranded 23-mer oligonucleotide (ssDNA) via a thiol linker on gold work electrodes. Residual binding places were filled with 6 -mercaptohexanol (MCH). The electrode was electrochemicaly characterized in the presence of a redox system ferri/ferrocyanide. Different concentrations of complementary DNA sequence for hybridization were incubated; an increase of charge transfer resistance (Rct) was observed, used as sensor parameter and correlated with concentrations of complementary DNA sequence. A debate was presented on the effect of the MgCl2 influence on ssDNA immobilization solution.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 617 ◽  
Author(s):  
Chuang-Ye Ge ◽  
Md. Mahbubur Rahman ◽  
Wei Zhang ◽  
Nasrin Siraj Lopa ◽  
Lei Jin ◽  
...  

This research demonstrated the development of a simple, cost-effective, and label-free immunosensor for the detection of α-synuclein (α-Syn) based on a cystamine (CYS) self-assembled monolayer (SAM) decorated fluorine-doped tin oxide (FTO) electrode. CYS-SAM was formed onto the FTO electrode by the adsorption of CYS molecules through the head sulfur groups. The free amine (–NH2) groups at the tail of the CYS-SAM enabled the immobilization of anti-α-Syn-antibody, which concurrently allowed the formation of immunocomplex by covalent bonding with α-Syn-antigen. The variation of the concentrations of the attached α-Syn at the immunosensor probe induced the alternation of the current and the charge transfer resistance (Rct) for the redox response of [Fe(CN)6]3−/4−, which displayed a linear dynamic range from 10 to 1000 ng/mL with a low detection limit (S/N = 3) of ca. 3.62 and 1.13 ng/mL in differential pulse voltammetry (DPV) and electrochemical impedance spectra (EIS) measurements, respectively. The immunosensor displayed good reproducibility, anti-interference ability, and good recoveries of α-Syn detection in diluted human serum samples. The proposed immunosensor is a promising platform to detect α-Syn for the early diagnose of Parkinson’s disease, which can be extended for the determination of other biologically important biomarkers.


2020 ◽  
Vol 20 (11) ◽  
pp. 7163-7168
Author(s):  
Huynh Vu Nguyen ◽  
Anna Go ◽  
Min-Ho Lee

A label-free electrochemical impedimetric immunosensor for the detection of Triiodothyronine—a thyroid hormone that functions as the biomarker for monitoring for thyroid dysfunction was developed. The gold nanoparticle-modified electrode was employed to achieve the sensitive determination of Triiodothyronine at a low concentration level. The gold nanoparticle layer on the gold electrode was generated by chronoamperometry method and its resulting characteristics were investigated by scanning electron microscopy. Redox probe [Fe(CN)6]3−/4− and electrochemical impedance spec-troscopy was used for both evaluation of the immobilization of anti-Triiodothyronine antibody on the electrode surface and quantitative determination of target Triiodothyronine in different concentrations. The electrode with absorbed antibodies showed significant changes in charge transfer resistance upon binding the antigen, which resulted in an increase in normalized impedance change as the addition of antigen concentrations over a dynamic linear range of 0.01–100 ng/ml. These results indicated that the proposed immunosensor could be a potential alternative method for determination of Triiodothyronine in clinics with the advantage of low cost and less time-consuming.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3956 ◽  
Author(s):  
Espinosa ◽  
Galván ◽  
Quiñones ◽  
Ayala ◽  
Durón

DNA electrochemical biosensors represent a feasible alternative for the diagnosis of different pathologies. In this work, the development of an electrochemical method for Human Papillomavirus-16 (HPV-16) sensing is reported based on potential relaxation measurements related to the discharge of a complex double layer of a DNA-modified gold electrode. The method used allows us to propose an equivalent circuit (EC) for a DNA/Au electrode, which was corroborated by electrochemical impedance spectroscopy (EIS) measurement. This model differs from the Randles circuit that is commonly used in double-layer simulations. The change in the potential relaxation and associated charge transfer resistance were used for sensing the DNA hybridization by using the redox pair Fe(CN)64-/Fe(CN)63+ as an electrochemical indicator. In order to determinate only the potential relaxation of the composed double layer, the faradic and double-layer current contributions were separated using a rectifier diode arrangement. A detection limit of 0.38 nM was obtained for the target HPV-16 DNA sequences. The biosensor showed a qualitative discrimination between a single-base mismatched sequence and the fully complementary HPV-16 DNA target. The results indicate that the discharge of the double-layer detection method can be used to develop an HPV DNA biosensor.


2019 ◽  
Vol 25 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Antra Ganguly ◽  
Paul Rice ◽  
Kai-Chun Lin ◽  
Sriram Muthukumar ◽  
Shalini Prasad

Misclassification of an acute disease condition as chronic and vice versa by electrochemical sweat biomarker sensors can cause significant psychological, emotional, and financial stress among patients. To achieve higher accuracy in distinguishing between a chronic condition and an acute condition, there is a need to establish a reference biomarker to index the actual chronic disease biomarker of interest by combinatorial sensing. This work provides the first technological proof of leveraging the chloride ion content in sweat for a combinatorial sweat biomarker benchmarking scheme. In this scheme, the sweat chloride ion has been demonstrated as the reference/indexing biomarker, while sweat cortisol has been studied as the disease biomarker of interest. Label-free affinity biosensing is achieved by using a two-electrode electrochemical system on a flexible substrate suitable for wearable applications. The electrochemical stability of the fabricated electrodes for biosensing applications was studied by open-circuit potential measurements. Attenuated total reflectance–Fourier transform infrared spectroscopy spectra validate the crosslinker–antibody binding chemistry. Concentration-dependent analyte–capture probe binding induces a modulation in the electrical properties (charge transfer resistance and double-layer capacitance) at the electrode–sweat buffer interface, which are transduced by nonfaradaic electrochemical impedance spectroscopy (EIS). Calibration dose responses for the sensor for cortisol (5–200 ng/mL) and chloride (10–100 mM) detection were evaluated in synthetic (pH 6) and pooled human sweat ( R2 > 0.95). The variation in the cortisol sensor response due to fluctuations in sweat chloride levels and the significance of reporting normalized biomarker levels were demonstrated to further emphasize the need for biomarker benchmarking in electrochemical sensors.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 575 ◽  
Author(s):  
Gorachand Dutta ◽  
Abdoulie A. Jallow ◽  
Debjani Paul ◽  
Despina Moschou

This paper reports for the first time printed-circuit-board (PCB)-based label-free electrochemical detection of bacteria. The demonstrated immunosensor was implemented on a PCB sensing platform which was designed and fabricated in a standard PCB manufacturing facility. Bacteria were directly captured on the PCB sensing surface using a specific, pre-immobilized antibody. Electrochemical impedance spectra (EIS) were recorded and used to extract the charge transfer resistance (Rct) value for the different bacteria concentrations under investigation. As a proof-of-concept, Streptococcus mutans (S. mutans) bacteria were quantified in a phosphate buffered saline (PBS) buffer, achieving a limit of detection of 103 CFU/mL. Therefore, the proposed biosensor is an attractive candidate for the development of a simple and robust point-of-care diagnostic platform for bacteria identification, exhibiting good sensitivity, high selectivity, and excellent reproducibility.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244297
Author(s):  
Jianhui Zhen ◽  
Gang Liang ◽  
Ruichun Chen ◽  
Wenshen Jia

Acetamiprid (ACE) is a kind of broad-spectrum pesticide that has potential health risk to human beings. Aptamers (Ap-DNA (1)) have a great potential as analytical tools for pesticide detection. In this work, a label-free electrochemical sensing assay for ACE determination is presented by electrochemical impedance spectroscopy (EIS). And the specific binding model between ACE and Ap-DNA (1) was further investigated for the first time. Circular dichroism (CD) spectroscopy and EIS demonstrated that the single strand AP-DNA (1) first formed a loosely secondary structure in Tris-HClO4 (20 mM, pH = 7.4), and then transformed into a more stable hairpin-like structure when incubated in binding buffer (B-buffer). The formed stem-loop bulge provides the specific capturing sites for ACE, forming ACE/AP-DNA (1) complex, and induced the RCT (charge transfer resistance) increase between the solution-based redox probe [Fe(CN)6]3−/4− and the electrode surface. The change of ΔRCT (charge transfer resistance change, ΔRCT = RCT(after)-RCT(before)) is positively related to the ACE level. As a result, the AP-DNA (1) biosensor showed a high sensitivity with the ACE concentration range spanning from 5 nM to 200 mM and a detection limit of 1 nM. The impedimetric AP-DNA (1) sensor also showed good selectivity to ACE over other selected pesticides and exhbited excellent performance in environmental water and orange juice samples analysis, with spiked recoveries in the range of 85.8% to 93.4% in lake water and 83.7% to 89.4% in orange juice. With good performance characteristics of practicality, sensitivity and selectivity, the AP-DNA (1) sensor holds a promising application for the on-site ACE detection.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

The development of an electrochemical biosensor for the detection of phosphorylated-tau threonine 231 (p-tau231), a biomarker of Alzheimer’s disease (AD), has yet to be achieved. Therefore, in this study, we developed a simple, small size, cheap, and sensitive electrochemical biosensor based on an interdigitated wave-shaped electrode via an activated self-assembled monolayer to preserve a specific anti–p-tau231 antibody (IWE/SAM/EDC-NHS/anti–p-tau231). Detection of p-tau231 in human serum (HS) using the biosensor was undertaken using electrochemical impedance spectroscopy (EIS). The change in charge-transfer resistance (Rct) in the EIS analysis of the biosensor indicated the detection of p-tau231 in HS within a wide linear range of detection (10−4–101 ng mL−1), and a low limit of detection (140 pg mL−1). This lower limit is less than the detection level of p-tau231 in cerebrospinal fluid (CSF) (700 pg mL−1) of AD patients and the level of CSF p-tau231 of patients with mild cognitive impairment (501 pg mL−1), demonstrating the possibility of using the biosensor in detection of p-tau231 at early stage AD. A high binding affinity and low dissociation constant (Kd) between anti–p-tau231 and p-tau231 in HS was demonstrated by using a biosensor and Kd was 7.6 pM, demonstrating the high specific detection of p-tau231 by the biosensor. The good selectivity of the biosensor for the detection of p-tau231 with differential analytes was also examined in this study.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1929
Author(s):  
Alexander Rodríguez ◽  
Francisco Burgos-Flórez ◽  
José D. Posada ◽  
Eliana Cervera ◽  
Valtencir Zucolotto ◽  
...  

Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10–1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Réka Barabás ◽  
Carmen Ioana Fort ◽  
Graziella Liana Turdean ◽  
Liliana Bizo

In the present work, ZrO2-based composites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP) to the inert zirconia. The composites were synthesized by the conventional ceramic processing route and morpho-structurally analyzed by X-ray powder diffraction (XRPD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two metallic dental alloys (i.e., Ni–Cr and Co–Cr) coated with a chitosan (Chit) membrane containing the prepared composites were exposed to aerated artificial saliva solutions of different pHs (i.e., 4.3, 5, 6) and the corrosion resistances were investigated by electrochemical impedance spectroscopy technique. The obtained results using the two investigated metallic dental alloys shown quasi-similar anticorrosive properties, having quasi-similar charge transfer resistance, when coated with different ZrO2-based composites. This behavior could be explained by the synergetic effect between the diffusion process through the Chit-composite layer and the roughness of the metallic electrode surface.


Sign in / Sign up

Export Citation Format

Share Document