Combinatorial Studies of Switching and Solid-Phase Crystallization in Amorphous Silicon

2005 ◽  
Vol 894 ◽  
Author(s):  
Paul Stradins ◽  
Howard M. Branz ◽  
Jian Hu ◽  
Scott Ward ◽  
Qi Wang

AbstractCombinatorial approaches are successfully applied for the optimization of electric write-once, thin-film Si antifuse memory devices, as well as for studying the solid-phase epitaxy kinetics of amorphous silicon on c-Si. High forward, low reverse current thin film Si diode deposition recipes are selected using cross-strips of different combinations of amorphous and microcrystalline doped layers, as well as a thickness-wedged intrinsic a-Si:H buffer layer. By studying switching in thickness-wedged a-Si:H layers, it is found that switching requires both a critical field and a critical bias voltage across the metallic contacts. Solid-phase epitaxy speed has a non-linear dependence on the film thickness, which is easily observed by optical image monitoring and analysis in wedged a-Si:H films on c-Si wafers.

1984 ◽  
Vol 35 ◽  
Author(s):  
G.L. Olson

ABSTRACTRecent progress in studies of temperature dependent kinetic competition during solid phase crystallization of silicon is reviewed. Specific areas which are emphasized include: the enhancement of solid phase epitaxial growth rates by impurity-induced changes in electronic properties at the crystal/amorphous interface, the influence of impurity diffusion and precipitation in amorphous silicon on the kinetics of epitaxial growth, the effects of impurities on the kinetic competition between solid phase epitaxy and random crystallization, and the kinetics of solid phase crystallization at very high temperatures in silicon.


2010 ◽  
Vol 44-47 ◽  
pp. 4151-4153 ◽  
Author(s):  
Rui Min Jin ◽  
Ding Zhen Li ◽  
Lan Li Chen ◽  
Xiang Ju Han ◽  
Jing Xiao Lu

Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.


Sign in / Sign up

Export Citation Format

Share Document