Solid phase crystallization of amorphous silicon on glass by thin film heater for thin film transistor (TFT) application

2003 ◽  
Vol 34 (9) ◽  
pp. 767-771 ◽  
Author(s):  
Byoung Dong Kim ◽  
Hunjoon Jung ◽  
Gi-Bum Kim ◽  
Seung-Ki Joo
2010 ◽  
Vol 44-47 ◽  
pp. 4151-4153 ◽  
Author(s):  
Rui Min Jin ◽  
Ding Zhen Li ◽  
Lan Li Chen ◽  
Xiang Ju Han ◽  
Jing Xiao Lu

Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.


1996 ◽  
Vol 424 ◽  
Author(s):  
Seok-Woon Lee ◽  
Byung-IL Lee ◽  
Tae-Hyung Ihn ◽  
Tae-Kyung Kim ◽  
Young-Tae Kang ◽  
...  

AbstractHigh performance poly-Si thin film transistors were fabricated by using a new crystallization method, Metal-Induced Lateral Crystallization (MILC). The process temperature was kept below 500°C throughout the fabrication. After the gate definition, thin nickel films were deposited on top of the TFT's without an additional mask, and with a one-step annealing at 500°C, the activation of the dopants in source/drain/gate a-Si films was achieved simultaneously with the crystallization of the a-Si films in the channel area. Even without a post-hydrogenation passivation, mobilities of the MILC TFT's were measured to be as high as 120cm2/Vs and 90cm2/Vs for n-channel and p-channel, respectively. These values are much higher than those of the poly-Si TFT's fabricated by conventional solid-phase crystallization at around 6001C.


2005 ◽  
Vol 894 ◽  
Author(s):  
Paul Stradins ◽  
Howard M. Branz ◽  
Jian Hu ◽  
Scott Ward ◽  
Qi Wang

AbstractCombinatorial approaches are successfully applied for the optimization of electric write-once, thin-film Si antifuse memory devices, as well as for studying the solid-phase epitaxy kinetics of amorphous silicon on c-Si. High forward, low reverse current thin film Si diode deposition recipes are selected using cross-strips of different combinations of amorphous and microcrystalline doped layers, as well as a thickness-wedged intrinsic a-Si:H buffer layer. By studying switching in thickness-wedged a-Si:H layers, it is found that switching requires both a critical field and a critical bias voltage across the metallic contacts. Solid-phase epitaxy speed has a non-linear dependence on the film thickness, which is easily observed by optical image monitoring and analysis in wedged a-Si:H films on c-Si wafers.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Taiki Kataoka ◽  
Yusaku Magari ◽  
Hisao Makino ◽  
Mamoru Furuta

We successfully demonstrated a transition from a metallic InOx film into a nondegenerate semiconductor InOx:H film. A hydrogen-doped amorphous InOx:H (a-InOx:H) film, which was deposited by sputtering in Ar, O2, and H2 gases, could be converted into a polycrystalline InOx:H (poly-InOx:H) film by low-temperature (250 °C) solid-phase crystallization (SPC). Hall mobility increased from 49.9 cm2V−1s−1 for an a-InOx:H film to 77.2 cm2V−1s−1 for a poly-InOx:H film. Furthermore, the carrier density of a poly-InOx:H film could be reduced by SPC in air to as low as 2.4 × 1017 cm−3, which was below the metal–insulator transition (MIT) threshold. The thin film transistor (TFT) with a metallic poly-InOx channel did not show any switching properties. In contrast, that with a 50 nm thick nondegenerate poly-InOx:H channel could be fully depleted by a gate electric field. For the InOx:H TFTs with a channel carrier density close to the MIT point, maximum and average field effect mobility (μFE) values of 125.7 and 84.7 cm2V−1s−1 were obtained, respectively. We believe that a nondegenerate poly-InOx:H film has great potential for boosting the μFE of oxide TFTs.


2009 ◽  
Vol 93 (6-7) ◽  
pp. 855-858 ◽  
Author(s):  
C. Becker ◽  
E. Conrad ◽  
P. Dogan ◽  
F. Fenske ◽  
B. Gorka ◽  
...  

2000 ◽  
Author(s):  
Pi-Fu Chen ◽  
Jr-Hong Chen ◽  
Dou-I Chen ◽  
HsixgJu Sung ◽  
June-Wei Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document