Low Thermal Budget Techniques For Controlling Stress In Si1-XGeX Deposited At 210°C

2006 ◽  
Vol 910 ◽  
Author(s):  
Sherif Sedky ◽  
Omar Mortagy ◽  
Ann Witvrouw

AbstractThis work reports, for the first time, on the possibility of realizing surface micromachined silicon germanium structures at 210°C, which have extremely low strain gradient (μm-1). This extremely low strain gradient is obtained by tuning the physical properties of Si1-xGex, locally, without affecting the underlying layers, by excimer laser annealing. Tuning the laser annealing condition to optimize the physical properties of PECVD Si1-xGex is challenging, especially for films deposited at low temperatures (~ 250°C or lower) due to the high hydrogen content and the poor adhesion of these films. Furthermore, optimizing some properties might be at the cost of others. To clarify this issue, it is interesting to note that reducing the electrical resistivity implies using high laser pulse fluence. This however will increase mean stress, strain gradient and surface roughness as will be shown in this work.

1994 ◽  
Vol 354 ◽  
Author(s):  
E. Fogarassy ◽  
D. Dentel ◽  
JJ. Grob ◽  
B. Prévot ◽  
J.P. Stoquert ◽  
...  

AbstractWe investigate, for the first time, the possibility to crystallize heavily Ge and C implanted silicon substrates by excimer-laser annealing performed in the molten regime. It is demonstrated that the crystalline quality of the laser grown SiGeC alloys strongly depends on the initial dose of implanted carbon.


2011 ◽  
Vol 1299 ◽  
Author(s):  
Joumana El-Rifai ◽  
Ann Witvrouw ◽  
Ahmed Abdel Aziz ◽  
Robert Puers ◽  
Chris Van Hoof ◽  
...  

ABSTRACTLowering the silicon germanium (SiGe) deposition temperature from the current 450°C to below 250°C will enable processing Micro Electro-Mechanical Systems (MEMS) on flexible polymer instead of on rigid silicon substrates or glass carriers. A major disadvantage of such a low temperature deposition is that the films are amorphous, with high hydrogen content and yield poor electrical and mechanical properties. To ensure films suitable for MEMS applications, a post-deposition laser annealing (LA) treatment is used. It is essential that the contact resistance between the SiGe MEMS structural layer and any lower electrode is minimized. In this work we investigate what beneficial effect a LA treatment can have on the contact resistivity of an initially amorphous SiGe MEMS structural layer with a bottom TiN electrode. We report a minimum contact resistivity of 2.14×10−3Ωcm2.


2004 ◽  
Vol 19 (12) ◽  
pp. 3503-3511 ◽  
Author(s):  
Sherif Sedky ◽  
Jeremy Schroeder ◽  
Timothy Sands ◽  
Tsu-Jae King ◽  
Roger T. Howe

We investigated the use of a pulsed excimer laser having a wavelength of 248 nm, a pulse duration of 38 ns, and an average fluence between 120 and 780 mJ/cm2 to locally tailor the physical properties of Si1−xGex (18% < x < 90%) films deposited by low-pressure chemical vapor deposition at temperatures between 400 and 450 °C. Amorphous as-deposited films showed, after laser annealing, strong {111} texture, a columnar grain microstructure, and an average resistivity of 0.7 mΩ cm. Atomic force microscopy indicated that the first few laser pulses resulted in a noticeable reduction in surface roughness, proportional to the pulse energy. However, a large number of successive pulses dramatically increased the surface roughness. The maximum thermal penetration depth of the laser pulse is demonstrated to depend on the fluence and the film structure being either polycrystalline or amorphous. Finally, a comparison between excimer laser annealing and metal-induced crystallization and rapid thermal annealing is presented.


1986 ◽  
Vol 71 ◽  
Author(s):  
T. Sameshima ◽  
S. Usui

AbstractMo-gate n-channel poly-Si TFTs have been fabricated for the first time at a low processing temperature of 26°C. 500 to 1000A thick a-Si:H was successfully crystallized by pulsed XeCl excimer laser (308nm) annealing without heating the glass substrate. The channel mobility of the TFT was 180 cm2/V.sec when the a-Si:H was annealed at energy density of 200 mJ/cm2.


2017 ◽  
Vol 48 (1) ◽  
pp. 1532-1535 ◽  
Author(s):  
Kaname Imokawa ◽  
Satoshi Tanaka ◽  
Koji Ashikawa ◽  
Yosuke Watanabe ◽  
Takayuki Nagashima ◽  
...  

2017 ◽  
pp. 34-47
Author(s):  
Hoi Le Quoc ◽  
Nam Pham Xuan ◽  
Tuan Nguyen Anh

The study was targeted at developing a methodology for constructing a macroeconomic performance index at a provincial level for the first time in Vietnam based on 4 groups of measurements: (i) Economic indicators; (ii) oriented economic indicators; (iii) socio-economic indicators; and (iv) economic - social – institutional indicators. Applying the methodology to the 2011 - 2015 empirical data of all provinces in Vietnam, the research shows that the socio-economic development strategy implemented by those provinces did not provide balanced outcomes between growth and social objectives, sustainability and inclusiveness. Many provinces focused on economic growth at the cost of structural change, equality and institutional transformation. In contrast, many provinces were successful in improving equality but not growth. Those facts threaten the long-term development objectives of the provinces.


2002 ◽  
Vol 715 ◽  
Author(s):  
Sang-Hoon Jung ◽  
Jae-Hoon Lee ◽  
Min-Koo Han

AbstractA short channel polycrystalline silicon thin film transistor (poly-Si TFT), which has single grain boundary in the center of channel, is reported. The reported poly-Si TFT employs lateral grain growth method through aluminum patterns, which acts as a selective beam mask and a lateral heat sink during the laser irradiation, on an amorphous silicon layer. The electrical characteristics of the proposed poly-Si TFT have been considerably improved due to grain boundary density lowered. The reported short channel poly-Si TFT with single grain boundary exhibits high mobility as 222 cm2/Vsec and large on/off current ratio exceeding 1 × 108.


Author(s):  
Mark Blaxill ◽  
Toby Rogers ◽  
Cynthia Nevison

AbstractThe cost of ASD in the U.S. is estimated using a forecast model that for the first time accounts for the true historical increase in ASD. Model inputs include ASD prevalence, census population projections, six cost categories, ten age brackets, inflation projections, and three future prevalence scenarios. Future ASD costs increase dramatically: total base-case costs of $223 (175–271) billion/year are estimated in 2020; $589 billion/year in 2030, $1.36 trillion/year in 2040, and $5.54 (4.29–6.78) trillion/year by 2060, with substantial potential savings through ASD prevention. Rising prevalence, the shift from child to adult-dominated costs, the transfer of costs from parents onto government, and the soaring total costs raise pressing policy questions and demand an urgent focus on prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document