Novel Silicon-Elastomers for Advanced Soft Lithography

2006 ◽  
Vol 947 ◽  
Author(s):  
Kyung Choi

ABSTRACTHigh resolution pattern transfers in the nano-scale regime have been considerable challenges in ‘soft lithography’ to achieve nanodevices with enhanced performances. In this technology, the resolution of pattern integrations is significantly rely on the materials' properties of polydimethylsiloxane (PDMS) stamps. Since commercial PDMS stamps have shown limitations in nano-scale resolution soft lithography due to their low physical toughness and high thermal expansion coefficients, we developed stiffer, photocured PDMS silicon elastomers designed, specifically for nano-sized soft lithography and photopatternable nanofabrications.

2005 ◽  
Vol 38 (6) ◽  
pp. 1038-1039 ◽  
Author(s):  
Robert Hammond ◽  
Klimentina Pencheva ◽  
Kevin J. Roberts ◽  
Patricia Mougin ◽  
Derek Wilkinson

Variable-temperature high-resolution capillary-mode powder X-ray diffraction is used to assess changes in unit-cell dimensions as a function of temperature over the range 188–328 K. No evidence was found for any polymorphic transformations over this temperature range and thermal expansion coefficients for urea were found to be αa= (5.27 ± 0.26) × 10−5 K−1and αc= (1.14 ± 0.057) × 10−5 K−1.


2011 ◽  
Vol 308-310 ◽  
pp. 311-314
Author(s):  
Jin Wen ◽  
Shu Zhen Sun

The high average thermal expansion required for thermal compatibility of dental porcelain with their substrate alloy is supplied by the mineral leucite (KAlSi2O6). In the research, the high thermal expansion coefficients phase leucite was prepared by coprecipitation technique. Three materials with formulae of K2O∶Al2O3∶SiO2= 1∶1∶x ( x=1.4, 2.0, 4.0 ) were investigated for differences in phase, thermal expansion. Unstoichiometric composition where K2O and Al2O3were added properly is advantage to leucite obtained. Coprecipitation processing produced fine leucite powder that would sinter at 1300°C, this temperature is about 200°C lower than of melting method. The average thermal expansion coefficients of leucite is 22.7×10-6/°Cfrom room temperature to 620°C,which is higher than the common porcelain. Changing in the leucite content of dental porcelain would results from thermal expansion coefficients of porcelain variation, which could be responsible for changes in porcelain-metal thermal compatibility.


Author(s):  
Efstathios E. Michaelides

The two constituent phases of the nanofluids have thermal expansion coefficients that are significantly different. Moreover, the variability of the thermal expansion coefficients of fluids with temperature is significantly higher than that of solid materials. The mismatch of the thermal expansion coefficients creates changes of the volumetric fraction of solids with temperature changes. The changes can be significant with fluids that have high thermal expansion coefficients, such as refrigerants and fluids that operate close to their critical points. Since the thermal conductivity of nanofluids is a very strong function of the volumetric fraction of the nanoparticles, these changes of the volumetric fraction may cause significant effects on the thermal conductivity of the nanofluids, which must be accounted for in any design process.


2016 ◽  
Vol 30 (11) ◽  
pp. 1650127 ◽  
Author(s):  
Yi Ren ◽  
Wen Ma ◽  
Xiaoying Li ◽  
Jun Wang ◽  
Yu Bai ◽  
...  

The SOFC interconnect materials La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] [Formula: see text]–[Formula: see text] were prepared using an auto-ignition process. The influences of Cr deficiency on their sintering, thermal expansion and electrical properties were investigated. All the samples were pure perovskite phase after sintering at 1400[Formula: see text]C for 4 h. The cell volume of La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] decreased with increasing Cr deficient content. The relative density of the sintered bulk samples increased from 93.2% [Formula: see text] to a maximum value of 94.7% [Formula: see text] and then decreased to 87.7% [Formula: see text]. The thermal expansion coefficients of the sintered bulk samples were in the range of [Formula: see text]–[Formula: see text] (30–1000[Formula: see text]C), which are compatible with that of YSZ. Among the investigated samples, the sample with 0.02 Cr deficiency had a maximum conductivity of 40.4 Scm[Formula: see text] and the lowest Seebeck coefficient of 154.8 [Formula: see text]VK[Formula: see text] at 850[Formula: see text]C in pure He. The experimental results indicate that La[Formula: see text]Sr[Formula: see text]Cr[Formula: see text]O[Formula: see text] has the best properties and is much suitable for SOFC interconnect material application.


1985 ◽  
Vol 82 (3) ◽  
pp. 1611-1612 ◽  
Author(s):  
Stanley L. Segel ◽  
H. Karlsson ◽  
T. Gustavson ◽  
K. Edstrom

Author(s):  
Jonathan B. Hopkins ◽  
Lucas A. Shaw ◽  
Todd H. Weisgraber ◽  
George R. Farquar ◽  
Christopher D. Harvey ◽  
...  

The aim of this paper is to introduce an approach for optimally organizing a variety of different unit cell designs within a large lattice such that the bulk behavior of the lattice exhibits a desired Young’s modulus with a graded change in thermal expansion over its geometry. This lattice, called a graded microarchitectured material, can be sandwiched between two other materials with different thermal expansion coefficients to accommodate their different expansions or contractions caused by changing temperature while achieving a desired uniform stiffness. First, this paper provides the theory necessary to calculate the thermal expansion and Young’s modulus of large multi-material lattices that consist of periodic (i.e., repeating) unit cells of the same design. Then it introduces the theory for calculating the graded thermal expansions of a large multimaterial lattice that consists of non-periodic unit cells of different designs. An approach is then provided for optimally designing and organizing different unit cells within a lattice such that both of its ends achieve the same thermal expansion as the two materials between which the lattice is sandwiched. A MATLAB tool is used to generate images of the undeformed and deformed lattices to verify their behavior and various examples are provided as case studies. The theory provided is also verified and validated using finite element analysis and experimentation.


Sign in / Sign up

Export Citation Format

Share Document