Effect of Strain Rate on the Mechanical Behavior of 10-micron Long Polymeric Nanofibers

2006 ◽  
Vol 948 ◽  
Author(s):  
Mohammad Naraghi ◽  
Ioannis Chasiotis ◽  
Yuris Dzenis ◽  
Y. Wen ◽  
Hal Kahn

ABSTRACTThe strain rate mechanical behavior of 12-micron long polymeric nanofibers was investigated. Experiments were carried out by a novel method that employs a MEMS-based leaf spring load cell attached to a polymeric nanofiber that is drawn with an external PZT actuator. The elongation of the fiber and the deflection of the load cell were calculated from optical microscopy images by using Digital Image Correlation (DIC) and with 65 nm resolution in fiber extension. The nanofibers were fabricated from electrospun polyacrylonitrile (PAN) with MW = 150,000 and diameters between 300-600 nm. At strain rates between 0.00025 s−1 to 0.025 s−1 the fiber ductility scaled directly with the rate of loading while the tensile strength was found to vary non-monotonically: At 0.00025 s−1 material relaxations allowed for near-uniform fiber drawing with up to 120% ductility and 120 MPa maximum tensile strength. At the two faster rates the tensile strength scaled with the rate of loading but the fiber ductility was the result of a cascade of localized deformations at nanoscale necks with relatively constant wavelength for all fiber diameters.

Author(s):  
M. A. Malik ◽  
I. Salam ◽  
W. Muhammad

The extruded materials are extensively used in chemical, food and nuclear industry and generally offer a unique combination of strength and freedom with regard to design solutions. During extrusion, material flow occurs in the direction of applied force and as a result microstructure change. The process ultimately induces variation in the mechanical properties when tested along or across the extrusion direction. The uniaxial tensile test is a simple and versatile test to expose most of the mechanical properties of the materials required to ensure the reliability of the systems. In present study, the mechanical behavior of an Al-Mg-Si alloy extruded cylinder has been determined with the help of uniaxial tensile test in longitudinal and transverse orientations. The microstructural features revealed significant difference in two orientations and constituent particles were found aligned in the direction of extrusion. Tensile tests were conducted in displacement mode at different cross head speeds corresponding to strain rates ranging from 10−5 to 10−1 s−1. The tests were conducted at ambient temperature in air atmosphere. The data thus obtained include: yield strength, ultimate tensile strength, percent elongation and reduction of area. Comparing the trends of strength variation, the material shows higher yield strength in longitudinal orientation as compared to transverse orientation. A slight increase in the yield strength with increasing strain rate was found in both the orientations. The ultimate tensile strength in both the directions was found similar and there was no appreciable change with increasing strain rate. The elongation and reduction in area were found higher in the longitudinal orientation. The effect of strain rate on these properties was negligible up to maximum speed tested. In longitudinal orientation typical dimpled fracture was observed indicating deformation before failure. In transverse orientation shallow dimples were present. The present study revealed that the distribution of constituent particles in an extruded thick-walled cylinder has a pronounced effect on its mechanical behavior and fracture morphology.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1279
Author(s):  
Hui Guo ◽  
Chunjiang Lu ◽  
Yu Chen ◽  
Junlin Tao ◽  
Longyang Chen

In this work, the quasi-static and dynamic mechanical behavior of directional polymethylmethacrylate is investigated under conditions of uniaxial compression and tension. The main purpose of this investigation is to discuss the effect of strain rate and temperature on the deformation characteristics and failure of such material. Research was carried out with the use of an electric universal testing machine and split Hopkinson bars, which were equipped with high- and low-temperature control systems. The experimental methods for studying the tensile and compressive response of polymer materials under different testing conditions were validated by one-dimensional stress wave theory and digital-image correlation technique. The finite deformation stress–strain behaviors of the samples under different loading condition were obtained with a constant temperature ranging from 218 to 373 K. The experimental results showed that the uniaxial tensile and compressive behaviors of directional polymethylmethacrylate under finite deformation are strongly dependent on temperature, decreased tensile and compressive stress of the material under different strain levels, and increased temperature. Meanwhile, the dynamic tensile and compressive stresses of the material are much higher than the quasi-static stresses, showing the strain-rate strengthening effect. Moreover, the tensile and compressive mechanical behavior of directional polymethylmethacrylate has significant asymmetry. Finally, a visco-hyperelastic model is established to predict the rate-dependence mechanical behavior of directional polymethylmethacrylate at different temperatures.


2021 ◽  
Vol 63 (6) ◽  
pp. 529-536
Author(s):  
Daniel Kotzem ◽  
Lars Gerdes ◽  
Frank Walther

Abstract Additive manufacturing techniques enable the fabrication of new lightweight components with tailored mechanical properties. Considering current application fields, components are often over-dimensioned since a lack of data regarding the mechanical properties under compression or tensile loading at high strain rates is present. In this work, the influence of various strain rates on the mechanical properties of electron beam powder bed fusion Ti6Al4V lattice structures was investigated. In order to capture the damage mechanisms that occurred, a single unit cell plane was considered. In terms of mechanical characterization, high-speed tensile tests at nominal strain rates from 0.025 to 250 s-1 were carried out. By the additional use of a high-speed camera system and subsequent digital image correlation, an investigation of material reactions during shortest test times was enabled. Based on the results, a positive strain rate dependency was identified for yield and ultimate tensile strength for both investigated lattice types. In detail, an increase in ultimate tensile strength of 16 % for BCC- and 20 % for F2CCZ-specimens could be detected.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3202 ◽  
Author(s):  
Muhammad Salman Chaudhry ◽  
Aleksander Czekanski

To optimize the mechanical performance of fused deposition modelling (FDM) fabricated parts, it is necessary to evaluate the influence of process parameters on the resulting mechanical performance. The main focus of the study was to characterize the influence of the initial process parameters on the mechanical performance of thermoplastic polyurethane under a quasi-static and high strain rate (~2500 s−1). The effects of infill percentage, layer height, and raster orientation on the mechanical properties of an FDM-fabricated part were evaluated. At a quasi-static rate of loading, layer height was found to be the most significant factor (36.5% enhancement in tensile strength). As the layer height of the sample increased from 0.1 to 0.4 mm, the resulting tensile strength sample was decreased by 36.5%. At a high-strain rate of loading, infill percentage was found to be the most critical factor influencing the mechanical strength of the sample (12.4% enhancement of compressive strength at 100% as compared to 80% infill). Furthermore, statistical analysis revealed the presence of significant interactions between the input parameters. Finally, using an artificial neural networking approach, we evaluated a regression model that related the process parameters (input factors) to the resulting strength of the samples.


Sign in / Sign up

Export Citation Format

Share Document