Plasma Synthesis of Highly Monodisperse Ge Nanocrystals and Self-Assembly of Dense Nanocrystal Layers

2006 ◽  
Vol 974 ◽  
Author(s):  
Ryan Gresback ◽  
Zak Holman ◽  
Uwe Kortshagen

ABSTRACTGermanium nanocrystals have been synthesized using a low-pressure, nonthermal plasma approach. The nanocrystal size can be adjusted between 4-20 nm by varying the plasma parame-ters, and the size distribution is relatively narrow with standard deviations of 10-20% of the av-erage crystal size. Stable colloidal solutions of the germanium crystals have been prepared by grafting organic alkene ligands onto the nanocrystal surfaces. When drop-cast from solution onto TEM grids, the nanocrystals form densely packed films.

2007 ◽  
Vol 13 (6-7) ◽  
pp. 345-350 ◽  
Author(s):  
P. Cernetti ◽  
R. Gresback ◽  
S. A. Campbell ◽  
U. Kortshagen

2005 ◽  
Vol 901 ◽  
Author(s):  
Scott K. Stanley ◽  
Shawn S. Coffee ◽  
John G. Ekerdt

AbstractThis paper discusses a kinetically-driven patterning scheme to marry top-down and bottom-up assembly of nanoparticle arrays. We explain how Ge atoms interact with different dielectric surfaces to either etch the surface or to accumulate and self assemble into nanocrystals during chemical vapor deposition. By exploiting the different reactivity of these dielectrics, the accumulation of adatoms is controlled and thus subsequent self assembly of nanocrystals is controlled. Scanning electron microscopy and atomic force microscopy are used to determine particle densities. We have achieved dense (>1011 cm-2) arrays of self-assembled Ge nanocrystals within ∼100 µm sized features (defined by optical lithography) with no Ge deposition on the adjacent SiO2 sacrificial mask region. Electron beam lithography was used to pattern smaller (100 µm to 500 nm) features in which to direct the self assembly. As features shrink below 10 µm, nanoparticle nucleation within the feature is sharply affected. Finally, diblock copolymers are used to pattern 20 nm features to template self assembly of nanoparticles at a scale useful for device applications.


1994 ◽  
Vol 59 (6) ◽  
pp. 1301-1304
Author(s):  
Jaroslav Nývlt ◽  
Stanislav Žáček

Lead iodide was precipitated by a procedure in which an aqueous solution of potassium iodide at a concentration of 0.03, 0.10 or 0.20 mol l-1 was stirred while an aqueous solution of lead nitrate at one-half concentration was added at a constant rate. The mean size of the PbI2 crystals was determined by evaluating the particle size distribution, which was measured sedimentometrically. The dependence of the mean crystal size on the duration of the experiment exhibited a minimum for any of the concentrations applied. The reason for this is discussed.


2021 ◽  
Author(s):  
Roberto Li Voti ◽  
Grigore Leahu ◽  
Concita Sibilia ◽  
Roberto Matassa ◽  
Giuseppe Familiari ◽  
...  

Photoacoustic detection signal has been used to build a new strategy to determine the mesoscale self-assembly of metal nanoparticles in terms of size distribution and aggregate packing density (metal nanoparticles...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicholas Mozdzierz ◽  
Moo Sun Hong ◽  
Yongkyu Lee ◽  
Moritz Benisch ◽  
Mo Jiang ◽  
...  

Accompanied with the growth of the biopharmaceuticals market has been an interest in developing processes with increased control of product quality attributes at low manufacturing cost, with one of the...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Artur Tuktamyshev ◽  
Alexey Fedorov ◽  
Sergio Bietti ◽  
Stefano Vichi ◽  
Riccardo Tambone ◽  
...  

AbstractWe investigated the nucleation of Ga droplets on singular GaAs(111)A substrates in the view of their use as the seeds for the self-assembled droplet epitaxial quantum dots. A small critical cluster size of 1–2 atoms characterizes the droplet nucleation. Low values of the Hopkins-Skellam index (as low as 0.35) demonstrate a high degree of a spatial order of the droplet ensemble. Around $$350\,^{\circ }\hbox {C}$$ 350 ∘ C the droplet size distribution becomes bimodal. We attribute this observation to the interplay between the local environment and the limitation to the adatom surface diffusion introduced by the Ehrlich–Schwöbel barrier at the terrace edges.


2010 ◽  
Vol 84 (18) ◽  
pp. 9350-9358 ◽  
Author(s):  
Alexis Huet ◽  
James F. Conway ◽  
Lucienne Letellier ◽  
Pascale Boulanger

ABSTRACT The Siphoviridae coliphage T5 differs from other members of this family by the size of its genome (121 kbp) and by its large icosahedral capsid (90 nm), which is organized with T=13 geometry. T5 does not encode a separate scaffolding protein, but its head protein, pb8, contains a 159-residue aminoterminal scaffolding domain (Δ domain) that is the mature capsid. We have deciphered the early events of T5 shell assembly starting from purified pb8 with its Δ domain (pb8p). The self assembly of pb8p is regulated by salt conditions and leads to structures with distinct morphologies. Expanded tubes are formed in the presence of NaCl, whereas Ca2+ promotes the association of pb8p into contracted tubes and procapsids. Procapsids display an angular organization and 20-nm-long internal radial structures identified as the Δ domain. The T5 head maturation protease pb11 specifically cleaves the Δ domain of contracted and expanded tubes. Ca2+ is not required for proteolytic activity but for the organization of the Δ domain. Taken together, these data indicate that pb8p carries all of the information in its primary sequence to assemble in vitro without the requirement of the portal and accessory proteins. Furthermore, Ca2+ plays a key role in introducing the conformational diversity that permits the formation of a stable procapsid. Phage T5 is the first example of a viral capsid consisting of quasi-equivalent hexamers and pentamers whose assembly can be carried out in vitro, starting from the major head protein with its scaffolding domain, and whose endpoint is an icosahedral T=13 particle.


Sign in / Sign up

Export Citation Format

Share Document