Surface Deformation of Metal Films Under Controlled Pressure for Generating Ultra-flat Metal Surfaces

2007 ◽  
Vol 990 ◽  
Author(s):  
Logeeswaran Vj ◽  
Mei-Lin Chan ◽  
M.Saif Islam ◽  
David A. Horsley ◽  
Wei Wu ◽  
...  

ABSTRACTWe present a technique to generate ultra-smooth surfaces and direct pattern imprinting on thin metal films by flattening the bumps and spikes of a freshly vacuum deposited metal film. The technique was implemented by using a small footprint mechanical imprint press that has the capability to vary the applied pressure from 100MPa to 600MPa. The mechanical press was incorporated with a tactile force sensor that enabled direct monitoring of the applied pressure. We demonstrated the feasibility of the technique on an e-beam evaporated silver (Ag) metal film with thickness ranging from 150Å (optically thin) to 1000Å (optically thick). The film was deposited on double-polished (100)-oriented silicon surface and double-polished borosilicate glass, resulting in a varying degree of film smoothness. The surface morphology of the pressed thin film was then studied using atomic force microscopy and SEM. Our demonstration with the e-beam evaporated silver thin film exhibits the potential for applications in decreasing the scattering-induced losses in optical metamaterials, plasmonic nanodevices and electrical shorts in molecular-scale electronic devices.

2011 ◽  
Vol 14 (8) ◽  
pp. H311 ◽  
Author(s):  
J. Y. Son ◽  
D.-Y. Kim ◽  
H. Kim ◽  
W. J. Maeng ◽  
Y.-S. Shin ◽  
...  

2021 ◽  
Vol 900 ◽  
pp. 103-111
Author(s):  
Christelle Habis ◽  
Jean Zaraket ◽  
Michel Aillerie

Transparent conductive oxides are materials combining great transparency with high conductivity. In photovoltaic applications, they are developed under thin layer for the realization of upper electrodes of solar cells. Among transparent oxide materials, Zinc Oxide (ZnO) presents unique properties, starting with its first qualities to be abundant, low-cost and non-toxic oxide. Zinc Oxide thin film was deposited on rectangular glass substrate by magnetron sputtering. After an overview of the properties expected for good transparent conductive materials, the effect of distance from the center of the cell on the morphology of the film was investigated by Atomic Force Microscopy (AFM). The scanning was done on different area of the sample as function of the distance from the central position of the direct sputtering jet. As far as the distance increased, it has been noticed a quasi-linear increase in thickness of the ZnO deposited film and a change in the grain shape from spherical to pyramidal with an increase in the size of the particles. Controlling the sputtering distance allows the control of texture, thus of the Haze factor, the photo-generation of excitons, as well the optical transmission of the TCO layer and finally an improvement in the efficiency of the so-built photovoltaic cells.


2000 ◽  
Vol 71 (5) ◽  
pp. 2094-2096 ◽  
Author(s):  
Takashi Nishino ◽  
Akiko Nozawa ◽  
Masaru Kotera ◽  
Katsuhiko Nakamae

Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


2017 ◽  
Vol 49 (1) ◽  
pp. 73-79
Author(s):  
Jelena Potocnik ◽  
Milos Nenadovic ◽  
Bojan Jokic ◽  
Maja Popovic ◽  
Zlatko Rakocevic

In this work, Glancing Angle Deposition technique was used for obtaining nanostructured nickel thin film with vertical posts on glass substrate which was positioned 75 degrees with respect to the substrate normal and rotated with a suitable constant speed. The obtained nickel thin film was characterized by Scanning Electron Microscopy, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy. It was found that the deposited thin film consists of 94.0 at.% of nickel. Magnetic properties of the deposited thin film were determined by Magneto-Optical Kerr Effect Microscopy. According to the obtained coercivity values, it can be concluded that the nickel thin film shows uniaxial magnetic anisotropy.


1999 ◽  
Vol 562 ◽  
Author(s):  
C. Liu ◽  
L. Shen ◽  
H. Jiang ◽  
D. Yang ◽  
G. Wu ◽  
...  

ABSTRACTThe Ni80Fe20/Fe50Mn50,thin film system exhibits exchange bias behavior. Here a systematic study of the effect of atomic-scale thin film roughness on coercivity and exchange bias is presented. Cu (t) / Ta (100 Å) / Ni80Fe20 (100 Å) / Fe50Mno50 (200 Å) / Ta (200 Å) with variable thickness, t, of the Cu underlayer were DC sputtered on Si (100) substrates. The Cu underlayer defines the initial roughness that is transferred to the film material since the film grows conformal to the initial morphology. Atomic Force Microscopy and X-ray diffraction were used to study the morphology and texture of the films. Morphological characterization is then correlated with magnetometer measurements. Atomic Force Microscopy shows that the root mean square value of the film roughness exhibits a maximum of 2.5 Å at t = 2.4 Å. X-ray diffraction spectra show the films are polycrystalline with fcc (111) texture and the Fe50Mn50 (111) peak intensity decreases monotonically with increasing Cu thickness, t. Without a Cu underlayer, the values of the coercivity and loop shift are, Hc = 12 Oe and Hp = 56 Oe, respectively. Both the coercivity and loop shift change with Cu underlayer thickness. The coercivity reaches a maximum value of Hc= 36 Oe at t = 4 Å. The loop shift exhibits an initial increase with t, reaches a maximum value of HP = 107 Oe at t = 2.4 Å, followed by a decrease with greater Cu thickness. These results show that a tiny increase in the film roughness has a huge effect on the exchange bias magnitude.


Sign in / Sign up

Export Citation Format

Share Document