Sol-Gel Synthesis and Characterization of BiFeO3-PbTiO3 Thin Films

2007 ◽  
Vol 997 ◽  
Author(s):  
Ashish Garg ◽  
Soumya Kar ◽  
Anju Dixit ◽  
D C Agrawal

AbstractIn this work, we report on the synthesis and characterization of thin films of (BiFeO3)1−x (PbTiO3)x (BFPT) solid solutions of compositions around morphotropic phase boundary (MPB) grown on platinized silicon (111) Pt/TiO2/SiO2/Si substrate by sol-gel based spin coating technique. The films were post-annealed at 700 and 750°C for 1 h in air. Morphological analysis of the films was carried out by scanning electron microscopy. Grazing incidence X-ray diffractometry revealed the perovskite structure of the films and peaks suggested the presence of rhombohedral structured pure BFPT phase in polycrystalline form. Scanning electron microscopy suggested that films annealed at 750degC had a denser microstructure as compared to those at 700°C. The room temperature dielectric constant of the films with composition of BF:PT :: 75:25 was measured to be ∼1200 at a frequency of 100 kHz.

2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


Author(s):  
Debbie G. Jones ◽  
Albert P. Pisano

A novel fabrication process is presented to create ultra thick ferromagnetic structures in silicon. The structures are fabricated by electroforming NiFe into silicon templates patterned with deep reactive ion etching (DRIE). Thin films are deposited into photoresist molds for characterization of an electroplating cell. Results show that electroplated films with a saturation magnetization above 1.6 tesla and compositions of approximately 50/50 NiFe can be obtained through agitation of the electrolyte. Scanning electron microscopy (SEM) images show that NiFe structures embedded in a 500 μm thick silicon wafer are realized and the roughening of the mold sidewalls during the DRIE aids in adhesion of the NiFe to the silicon.


2013 ◽  
Vol 832 ◽  
pp. 128-131
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim

Titania or titanium dioxide (TiO2) thin film has been synthesized via sol-gel method with monoethanolamine (MEA) as a catalyst. The mixing of titanium butoxide as a precursor, ethanol as a solvent and MEA were stirred using magnetic stirrer under ambient temperature [. The TiO2solution prepared then was deposited on SiO2substrates using spin-coater and the coated films were annealed at 600°C. Finally, both before and after annealed TiO2thin films were characterized using Field Emission Scanning Electron Microscopy (FESEM). The obtained results show the different TiO2particles formation before and after annealed.


2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


2007 ◽  
Vol 546-549 ◽  
pp. 1699-1702
Author(s):  
Xi Ying Zhou ◽  
Liang He ◽  
Yan Hui Liu

Al-Cu-Fe quasicrystals powder was used to prepare the thin films on the surface of the A3 steel by the means of DMD-450 vacuum evaporation equipment. The thin films with different characterization were obtained through different parameters. The microstructures of the thin films were analyzed by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Additionally, the nano-hardness and the modulus of the films are tested by MTS and Neophot micro-hardness meter. The results showed that the modulus of the films was about 160GPa. Nano hardness of the films was about 7.5 Gpa. The films consisted of CuAl2, AlCu3. The thickness and the micro-hardness of the films are improved. In same way, with the increase of the electric current, the thickness and the hardness of the films are also improved. Along with increase of the time and the electric current, the wear behavior of the films was improved. To some extent, the microstructure of films contained the quasicrystal phase of Al65Cu20Fe15.


2012 ◽  
Vol 545 ◽  
pp. 169-171 ◽  
Author(s):  
Mawar Hazwani Jasimin ◽  
Nurhanna Badar ◽  
Rusdi Roshidah ◽  
Norlida Kamarulzaman

Aluminium oxide is one of the metal oxides that can exist in many phases such as α, θ, η etc. All the phases obtained are affected by annealing temperature and synthesis route. In this research the Al2O3 powders were synthesized by the combustion method using triethanolamine as fuels. A pure η phase as well as a mixed α and η phases were obtained. The size and morphology of Al2O3 particles were studied using scanning electron microscopy (SEM).


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2016 ◽  
Vol 851 ◽  
pp. 61-65 ◽  
Author(s):  
Kun Li Cao ◽  
Yan Wu ◽  
Jun Wang ◽  
Xiao Yu Hui ◽  
Xiao Tang Wang

Cellulose is a kind of renewable biological template with complex microstructure. Surface sol-gel technology, a practical and environmental-friendly approach to produce silica nanotubes, was discussed in this paper. A series of characterization techniques, namely thermal field emission scanning electron microscopy (SEM), and Aztec X-act spectrometer were used to characterize these samples. The design of the nanotube structure was achieved by natural cellulose and cellulose nanocrystals (CNC), and this nanocopying methodology provided silica nanotubes of cellulose template in nanometer precision.


Sign in / Sign up

Export Citation Format

Share Document