Characterization of stacked sol–gel films: Comparison of results derived from scanning electron microscopy, UV–vis spectroscopy and ellipsometric porosimetry

2012 ◽  
Vol 520 (6) ◽  
pp. 1880-1884 ◽  
Author(s):  
Andreas Bittner ◽  
Angelika Schmitt ◽  
Rainer Jahn ◽  
Peer Löbmann
2016 ◽  
Vol 851 ◽  
pp. 61-65 ◽  
Author(s):  
Kun Li Cao ◽  
Yan Wu ◽  
Jun Wang ◽  
Xiao Yu Hui ◽  
Xiao Tang Wang

Cellulose is a kind of renewable biological template with complex microstructure. Surface sol-gel technology, a practical and environmental-friendly approach to produce silica nanotubes, was discussed in this paper. A series of characterization techniques, namely thermal field emission scanning electron microscopy (SEM), and Aztec X-act spectrometer were used to characterize these samples. The design of the nanotube structure was achieved by natural cellulose and cellulose nanocrystals (CNC), and this nanocopying methodology provided silica nanotubes of cellulose template in nanometer precision.


2007 ◽  
Vol 997 ◽  
Author(s):  
Ashish Garg ◽  
Soumya Kar ◽  
Anju Dixit ◽  
D C Agrawal

AbstractIn this work, we report on the synthesis and characterization of thin films of (BiFeO3)1−x (PbTiO3)x (BFPT) solid solutions of compositions around morphotropic phase boundary (MPB) grown on platinized silicon (111) Pt/TiO2/SiO2/Si substrate by sol-gel based spin coating technique. The films were post-annealed at 700 and 750°C for 1 h in air. Morphological analysis of the films was carried out by scanning electron microscopy. Grazing incidence X-ray diffractometry revealed the perovskite structure of the films and peaks suggested the presence of rhombohedral structured pure BFPT phase in polycrystalline form. Scanning electron microscopy suggested that films annealed at 750degC had a denser microstructure as compared to those at 700°C. The room temperature dielectric constant of the films with composition of BF:PT :: 75:25 was measured to be ∼1200 at a frequency of 100 kHz.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


Sign in / Sign up

Export Citation Format

Share Document