Improvements on Flame Retardant Properties of PET/Montmorillonite Nanocomposite Caused by Polyborosiloxane

2007 ◽  
Vol 1007 ◽  
Author(s):  
Yue Huo ◽  
Qinguo Fan ◽  
Nicholas A Dembsey ◽  
Prabir K Patra

ABSTRACTA phenyl-containing highly cross linked polyborosiloxane (PBSiO) was synthesized as a flame retardant for polyethylene terephthalate (PET). We coated montmorillonite (MMT) clay, a very high aspect ratio and high specific surface area layered silicate with synthesized PBSiO to introduce synergism in flame retardation to the PET nanocomposite film that retained thermal and mechanical properties. This PBSiO has high thermal stability at the processing temperature (270-285° C) of PET and acts as a compatibilizer between PET and clay that are otherwise incompatible. During burning, the flame retardant PET containing PBSiO and MMT forms a protective borosilicatecarbonaceous intumescent char on the surface. Cone calorimeter tests were performed to evaluate key fire properties of the PET/PBSiO/MMT. The peak heat release rate (PHRR) of PET that contains 5 wt% PBSiO and 2.5 wt% MMT was reduced by 60% and similar trend in the reduction of mass loss rate of the nanocomposite was observed.

2019 ◽  
Vol 37 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Xi Cheng ◽  
Jianming Wu ◽  
Yulin Li ◽  
Chenguang Yao ◽  
Guisheng Yang

Aluminum hypophosphite combined with melamine cyanurate and poly(phenylene oxide) was applied to flame-retard TPE-S system (blends of SEBS and polyolefin). The flame-retardant properties of the TPE-S/AHP/MCA/PPO were investigated by LOI and vertical burning test (UL-94). The results indicated that TPE-S containing 16 wt% AHP, 20 wt% MCA, and 10 wt% PPO reached a V-0 rating in the UL-94 test, and its LOI value was 28.2%. It performed well in the cone calorimeter (reduction in peak heat release rate from 2001 to 494 kW m−2). Thermogravimetric-Fourier transform infrared spectroscopy tests showed that AHP and MCA acted in gaseous phase, while AHP and PPO helped to form char residue. The SEM graphs demonstrated that continuous and compact films cover bubbles of the char layer in TPE-S/AHP/MCA/PPO. The proposed flame-retardant mechanisms of such systems were summarized.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 968
Author(s):  
Hatem Abuhimd ◽  
Tentu Nageswara Rao ◽  
Jung-il Song ◽  
Prashanthi Yarasani ◽  
Faheem Ahmed ◽  
...  

Ethylenediamine modified ammonium polyphosphate (EDA-MAPP) and charring-foaming agents (CFA) were prepared using a simple chemical method and further used to make intumescent flame retardant coatings based on epoxy resin. The content of MAPP and CFA was fixed at a ratio of 2:1. Nanoparticles of magnesium aluminate (MgAl2O4 NPs) have been introduced into the flame retardant coating formulation in various quantities to evaluate the promotional action of MgAl2O4 NPs with a flame retardant coating system. The promotional action of MgAl2O4 NPs on the flame retardant coating formulation was studied using a vertical burning test (UL-94V), limiting oxygen index (LOI), thermogravimetric analysis (TGA) and Fourier transform infra-red spectroscopy (FTIR). The UL-94V results indicated that the addition of MgAl2O4 effectively increased flame retardancy and met the V-0 rating at each concentration. The TGA results revealed that the incorporation of MgAl2O4 NPs at each concentration effectively increased the thermal stability of the flame retardant coating system. Cone-calorimeter experiments show that MgAl2O4 NPs effectively decreased peak heat release rate (PHRR) and total heat release (THR). The FTIR results indicated that MgAl2O4 NPs can react with MAPP and generate a dense char layer that prevents the transfer of oxygen and heat.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
WeiYi Xing ◽  
Lei Song ◽  
Yuan Hu ◽  
Xiaoqi Lv ◽  
Xin Wang

AbstractPhosphorus-containing tri(acryloyloxyethyl) phosphate (TAEP) was blended with triglycidyl isocyanurate acrylate (TGICA) in different ratios to obtain a series of UV curable intumescent flame retardant resins. The fire properties of the cured films were characterized by limited oxygen index (LOI), UL 94 and Cone Calorimeter. A distinct synergistic effect was found between TAEP and TGICA. The sample TAEP2 had the highest LOI (44) value among all resins. The cone calorimeter results showed that the sample TAEP2 had the lowest peak heat release rate (297 KW/M2). The thermal degradation was monitored by thermogravimetric analysis (TGA) and real-time Fourier transform infrared spectroscopy (RT-FTIR). The degradation mechanism is suggested in which the phosphate group in TAEP first degraded to form poly(phosphoric acid)s, which further catalyzed the degradation of the material to form char with emission of nitrogen volatiles from TGICA, leading to the formation of expanding char.


2013 ◽  
Vol 438-439 ◽  
pp. 387-390 ◽  
Author(s):  
Da Liang Liu ◽  
Yi Zhong Yan ◽  
Yun Yong Huang ◽  
Jia Liang Yao ◽  
Jian Bo Yuan

Flame retardants modified asphalt with SBS flame retardant SMA hybrid material was prepared, flame retardant performances of SMA mixture was studied by the cone calorimeter. The results show that adding 12% flame retardant with SBS modified asphalt in preparation of flame retardant SMA mixture, the peak heat release rate values than the non-flame retardant asphalt mixture decreased by 4.02 kW/m2, and the heat release rate values were significantly reduced, the total heat and the amount of smoke of flame retardant asphalt mixture released less than the non-flame retardant asphalt mixture.


2011 ◽  
Vol 105-107 ◽  
pp. 1723-1726
Author(s):  
Wei Ma ◽  
Wen Bin Yao

According to Natural Bamboo Fiber/ Polypropylene fiber(PP) non-woven materials encountered the problem that its flame retardation is insufficient, this paper tried to add flame retardant to improve its performance, then the cone calorimeter was used to evaluate its flammability. The results show that Peak-Heat Release Rate and Smoke Release Rate etc significantly improved. In accordance with the UL94 ,the flame retardation meet the level V-0 , consistent with the requirements of enterprise.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4826
Author(s):  
Simon König ◽  
Philipp Kreis ◽  
Christian Herbert ◽  
Andreas Wego ◽  
Mark Steinmann ◽  
...  

Poly(acrylonitrile) (PAN) fibers have two essential drawbacks: they are usually processed by solution-spinning, which is inferior to melt spinning in terms of productivity and costs, and they are flammable in air. Here, we report on the synthesis and melt-spinning of an intrinsically flame-retardant PAN-copolymer with phosphorus-containing dimethylphosphonomethyl acrylate (DPA) as primary comonomer. Furthermore, the copolymerization parameters of the aqueous suspension polymerization of acrylonitrile (AN) and DPA were determined applying both the Fineman and Ross and Kelen and Tüdõs methods. For flame retardancy and melt-spinning tests, multiple PAN copolymers with different amounts of DPA and, in some cases, methyl acrylate (MA) have been synthesized. One of the synthesized PAN-copolymers has been melt-spun with propylene carbonate (PC) as plasticizer; the resulting PAN-fibers had a tenacity of 195 ± 40 MPa and a Young’s modulus of 5.2 ± 0.7 GPa. The flame-retardant properties have been determined by Limiting Oxygen Index (LOI) flame tests. The LOI value of the melt-spinnable PAN was 25.1; it therefore meets the flame retardancy criteria for many applications. In short, the reported method shows that the disadvantage of high comonomer content necessary for flame retardation can be turned into an advantage by enabling melt spinning.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750042 ◽  
Author(s):  
Hao Tang ◽  
Kunfeng Chen ◽  
Xiaonan Li ◽  
Man Ao ◽  
Xinwen Guo ◽  
...  

Halogen-free and environment-friendly magnesium hydroxide (Mg(OH)2) was synthesized to enhance the flame retardant properties of thermoplastic elastomer (TPE). When the Mg(OH)2 content was optimized to 35[Formula: see text]wt.%, the TPE–Mg(OH)2 composites exhibited the best flame retardant properties. The results showed that there was a delay of ignition time of the samples containing Mg(OH)2; compared with the samples without Mg(OH)2, the heat release rate and total heat release decrease by 31.4% and 35.6%, while total smoke production and mass loss rate reduce by 56% and 34.2%, respectively. This work opens a door to manufacture fire-resistant polymer-based composites with environmental-friendly flame retardant additives by controllable crystallization and chemical strategies.


2021 ◽  
Author(s):  
Junxiu Piao ◽  
Jinyong Ren ◽  
Yaofei Wang ◽  
Tingting Feng ◽  
Yaxuan Wang ◽  
...  

Abstract Cotton fabric is widely used in many occasions, but it is flammable with high fire risk. To meet the great fire safety demands of cotton fabric, a novel lignocellulosic-based P-N synergistic (LFPN) flame-retardant coating with high efficiency and environment friendly was developed via mechanochemistry strategy in the aqueous phase. The characterisation results showed the stable P-O-C bond formed to bind both lignocellulosic fibre and ammonium polyphosphate (APP). Meanwhile, LFPN has an excellent dispersion in water with a nanometer-scale enveloping rod structure. The cotton fabric treated by the LFPN coating showed outstanding flame-retardant properties, the peak heat release rate (PHRR) was reduced by 77% and the residue mass was increased by 259% compared with control cotton fabric. And there was a self-extinction phenomenon during the flammability test of flame retardant cotton. Based on the analysis of the combustion and pyrolysis process, a gas-condensed two-phase flame retardant mechanism model was proposed, which could be used to explain the action process of LFPN for cotton fabric during combustion.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Muhammad Maqsood ◽  
Gunnar Seide

Starch, being a polyhydric compound with its natural charring ability, is an ideal candidate to serve as a carbonization agent in an intumescent system. This charring ability of starch, if accompanied by an acidic source, can generate an effective intumescent flame retardant (IFR) system, but the performance of starch-based composites in an IFR system has not been tested in detail. Here, we describe a PLA-based IFR system consisting of ammonium polyphosphate (APP) as acidic source and cornstarch as carbon source. We prepared different formulations by melt compounding followed by molding into sheets by hot pressing. The thermal behavior and surface morphology of the composites was investigated by thermogravimetric analysis and scanning electron microscopy respectively. We also conducted limiting oxygen index (LOI), UL-94, and cone calorimetry tests to characterize the flame-retardant properties. Cone calorimetry revealed a 66% reduction in the peak heat release rate of the IFR composites compared to pure PLA and indicated the development of an intumescent structure by leaving a residual mass of 43% relative to the initial mass of the sample. A mechanism of char formation has also been discussed in detail.


2015 ◽  
Vol 18 (4) ◽  
pp. 16-22
Author(s):  
Linh Thi Thuy Pham ◽  
Hien Thi Thu Nguyen ◽  
Quy Thi Dong Hoang

In order to improve the fire performance of composite materials, halogen-free flame retardant (diamonium hydrogen phosphate- DAP) was studied in an attempt to obtain UL-94 ratings for composite PVC-wood flour (PVC-WF). The fire behaviors and thermal stability properties were evaluated using UL- 94 vertical test, LOI test and thermogravimetric analysis (TGA). The UL- 94 test results show that V-0 rating is achieved at 1.5 wt% of DAP loading. The incorporation of halogene-free flame retardant (FR) increases the flame retardant properties as well as the amounts of charred residues protecting the mixture from further degradation. This assertion can be accepted when observing that the char residual of PVC-WF/DAP mixture at 600 oC is much higher than that of neat PVC-WF. The char layer may limit the amount of fuel available and insulate the underlying composite material from the flame and, thus, inhibit further degradation. This FR is a promising candidate that could replace the halogenbased flame retardant.


Sign in / Sign up

Export Citation Format

Share Document