scholarly journals Influence of Magnesium Aluminate Nanoparticles on Epoxy-Based Intumescent Flame Retardation Coating System

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 968
Author(s):  
Hatem Abuhimd ◽  
Tentu Nageswara Rao ◽  
Jung-il Song ◽  
Prashanthi Yarasani ◽  
Faheem Ahmed ◽  
...  

Ethylenediamine modified ammonium polyphosphate (EDA-MAPP) and charring-foaming agents (CFA) were prepared using a simple chemical method and further used to make intumescent flame retardant coatings based on epoxy resin. The content of MAPP and CFA was fixed at a ratio of 2:1. Nanoparticles of magnesium aluminate (MgAl2O4 NPs) have been introduced into the flame retardant coating formulation in various quantities to evaluate the promotional action of MgAl2O4 NPs with a flame retardant coating system. The promotional action of MgAl2O4 NPs on the flame retardant coating formulation was studied using a vertical burning test (UL-94V), limiting oxygen index (LOI), thermogravimetric analysis (TGA) and Fourier transform infra-red spectroscopy (FTIR). The UL-94V results indicated that the addition of MgAl2O4 effectively increased flame retardancy and met the V-0 rating at each concentration. The TGA results revealed that the incorporation of MgAl2O4 NPs at each concentration effectively increased the thermal stability of the flame retardant coating system. Cone-calorimeter experiments show that MgAl2O4 NPs effectively decreased peak heat release rate (PHRR) and total heat release (THR). The FTIR results indicated that MgAl2O4 NPs can react with MAPP and generate a dense char layer that prevents the transfer of oxygen and heat.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2721
Author(s):  
Riyazuddin Riyazuddin ◽  
Samrin Bano ◽  
Fohad Mabood Husain ◽  
Rais Ahmad Khan ◽  
Ali Alsalme ◽  
...  

Ethylenediamine modified Ammonium polyphosphate (EDA-MAPP), and Charring-Foaming Agents (CFA) was prepared via a simple chemical approach and further utilizes for the preparation of Epoxy resin based intumescent flame retardation coatings. The ratio belongs to MAPP and CFA was fixed at 2:1 ratio. Comparative thermo gravimetric analysis TGA study of Modified Ammonium polyphosphate (MAPP) and Ammonium polyphosphate (APP) investigated. Sb2O3 was introduced into flame retardation coating formulation at various amounts to evaluate the synergistic action of Sb2O3 along with flame retardant coating system. The synergistic action of Sb2O3 on flame retardation coating formulation was studied by vertical burning test (UL-94V), thermo gravimetric analysis (TGA), Limited Oxygen Index (LOI), and Fourier Transform Infra-Red spectroscopy (FTIR). The UL-94V results indicated that adding Sb2O3 effectively increased flame retardancy and meets V-0 ratings at each concentration. The TGA results revealed that the amalgamation of Sb2O3 at each concentration effectively increased the thermal stability of the flame retardant coating system. Cone-calorimeter study results that Sb2O3 successfully minimized the combustion parameters like, Peak Heat Release Rate (PHRR), and Total Heat Release (THR). The FTIR result shows that Sb2O3 can react with MAPP and generates the dense-charred layer which prevents the transfer of heat and oxygen.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7589
Author(s):  
Fuqiang Dong ◽  
Zhonglin Luo ◽  
Biaobing Wang

A piperazine phosphate doped with Mn2+ (HP-Mn), as a new char-forming agent for intumescent flame retardant systems (IFR), was designed and synthesized using 1-hydroxy ethylidene-1,1-diphosphonic acid, piperazine, and manganese acetate tetrahydrate as raw materials. The effect of HP-Mn and ammonium polyphosphate (APP) on the fire safety and thermal stability of polypropylene (PP) was investigated. The results showed that the combined incorporation of 25 wt.% APP/HP-Mn at a ratio of 1:1 endowed the flame retardant PP (PP6) composite with the limiting oxygen index (LOI) of 30.7% and UL-94 V-0 rating. In comparison with the pure PP, the peak heat release rate (PHRR), the total heat release (THR), and the smoke production rate (PSPR) of the PP6 were reduced by 74%, 30%, and 70%, respectively. SEM and Raman analysis of the char residues demonstrated that the Mn2+ displayed a catalytic cross-linking charring ability to form a continuous and compact carbon layer with a high degree of graphitization, which can effectively improve the flame retardancy of PP/APP composites. A possible flame-retardant mechanism was proposed to reveal the synergistic effect between APP and HP-Mn.


2011 ◽  
Vol 105-107 ◽  
pp. 1723-1726
Author(s):  
Wei Ma ◽  
Wen Bin Yao

According to Natural Bamboo Fiber/ Polypropylene fiber(PP) non-woven materials encountered the problem that its flame retardation is insufficient, this paper tried to add flame retardant to improve its performance, then the cone calorimeter was used to evaluate its flammability. The results show that Peak-Heat Release Rate and Smoke Release Rate etc significantly improved. In accordance with the UL94 ,the flame retardation meet the level V-0 , consistent with the requirements of enterprise.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 550-560
Author(s):  
Huaifang Wang ◽  
Yingli Cai ◽  
Zhiming Jiang ◽  
Shengnan Guo ◽  
Ping Zhu

AbstractA phosphoramidate flame retardant (dimethyl N,N-bis(2-hydroxyletheyl)phosphoramidate, DMBHP) was synthesized and applied to cotton fabrics for enhancing the flame retardancy. The structure of DMBHP was characterized by FT-IR and NMR. The flame retardancy and combustion behavior of the treated cotton fabrics were evaluated using the vertical flammability test (VFT), limiting oxygen index (LOI), and the cone calorimetric test. Moreover, to further analyze the flame retardant action of DMBHP in cotton fabrics, thermal degradability of the treated fabrics, as well as the chemical structure, surface morphology, and element contents of the char residue of the DMBHP-treated fabrics were also evaluated. The results show that, after treating with DMBHP, the cotton fabrics acquired a LOI value from 18.1 to 31.1 with the concentration increasing to 30% and self-extinguished in VFT tests when treated with up to 15% DMBHP. Besides, the total heat release and the peak heat release rate of DMBHP (30%)-treated fabric decreased obviously compared with the pure cotton along with more residue retained. TG, SEM, and EDS results of treated cotton fabric and the corresponding residue after burning showed that DMBHP has the capability of enhancing char formation. In addition, DMBHP will confer cotton fabrics a certain durability against washing with the help of 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA).


2020 ◽  
Vol 32 (6) ◽  
pp. 710-718
Author(s):  
Zhengzhou Wang ◽  
Xin Gao ◽  
Wenfeng Li

Flame-retardant epoxy (EP) resin/cyanate ester (CE) composites were prepared with 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and wollastonite (Wo). The combustion behavior of the flame-retardant EP/CE composites was investigated by limiting oxygen index (LOI), UL-94, and cone calorimeter tests. It is found that the EP/CE composite containing 7 wt% DOPO and 3 wt% Wo (sample 7DO/3Wo/EP/CE) exerts the best flame retardancy (LOI 35.5% and UL-94 V-0 rating). The peak heat release rate and total heat release of sample 7DO/3Wo/EP/CE increase slightly, while total smoke release decreases about 14% compared with the EP/CE composite containing 10 wt% DOPO (sample 10DO/EP/CE). Thermal studies indicate that the glass transition temperature and temperature at 5% mass loss of sample 7DO/3Wo/EP/CE are higher than that of sample 10DO/EP/CE. Moreover, the mechanical properties of EP/CE composites were investigated.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1487 ◽  
Author(s):  
Sihao Yin ◽  
Xinlin Ren ◽  
Peichao Lian ◽  
Yuanzhi Zhu ◽  
Yi Mei

We applied black phosphorene (BP) and hexagonal boron nitride (BN) nanosheets as flame retardants to waterborne polyurethane to fabricate a novel black phosphorus/boron nitride/waterborne polyurethane composite material. The results demonstrated that the limiting oxygen index of the flame-retarded waterborne polyurethane composite increased from 21.7% for pure waterborne polyurethane to 33.8%. The peak heat release rate and total heat release of the waterborne polyurethane composite were significantly reduced by 50.94% and 23.92%, respectively, at a flame-retardant content of only 0.4 wt%. The superior refractory performances of waterborne polyurethane composite are attributed to the synergistic effect of BP and BN in the gas phase and condensed phase. This study shows that black phosphorus-based nanocomposites have great potential to improve the fire resistance of polymers.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Yue Huo ◽  
Qinguo Fan ◽  
Nicholas A Dembsey ◽  
Prabir K Patra

ABSTRACTA phenyl-containing highly cross linked polyborosiloxane (PBSiO) was synthesized as a flame retardant for polyethylene terephthalate (PET). We coated montmorillonite (MMT) clay, a very high aspect ratio and high specific surface area layered silicate with synthesized PBSiO to introduce synergism in flame retardation to the PET nanocomposite film that retained thermal and mechanical properties. This PBSiO has high thermal stability at the processing temperature (270-285° C) of PET and acts as a compatibilizer between PET and clay that are otherwise incompatible. During burning, the flame retardant PET containing PBSiO and MMT forms a protective borosilicatecarbonaceous intumescent char on the surface. Cone calorimeter tests were performed to evaluate key fire properties of the PET/PBSiO/MMT. The peak heat release rate (PHRR) of PET that contains 5 wt% PBSiO and 2.5 wt% MMT was reduced by 60% and similar trend in the reduction of mass loss rate of the nanocomposite was observed.


2020 ◽  
Vol 38 (6) ◽  
pp. 485-503
Author(s):  
Benjamin Tawiah ◽  
Bin Yu ◽  
Anthony Chun Yin Yuen ◽  
Bin Fei

The demand for environmentally benign flame retardants for biodegradable polymers has become particularly necessary due to their inherently “green” nature. This work reports intrinsically non-toxic polydopamine (PDA) particles as an efficient and environmentally friendly flame retardant for polylactic acid (PLA). 5 wt% PDA loading resulted in a 22% reduction in the peak heat release rate, 34.7% increase in the fire performance index, and lower CO2 production compared to neat PLA. A limiting oxygen index (LOI) value of 27.5% and a V-2 rating was achieved in the UL-94 vertical burning test. Highly aggregated amorphous particulate char was formed with the increasing content of PDA, and a significant reduction in evolved pyrolysis gaseous products was achieved for the PLA/PDA composites as compared with control PLA. This work provides important insight into the potential commercial application of PDA alone as an efficiently green, environmentally benign flame retardant for bioplastic PLA.


Sign in / Sign up

Export Citation Format

Share Document