scholarly journals Band Offsets at Strained-Layer Interfaces

1987 ◽  
Vol 102 ◽  
Author(s):  
Chris G. Van De Walle

ABSTRACTStrained-layer heterojunctions and superlattices have recently shown tremendous potential for device applications because of their flexibility for tailoring the electronic band structure. We present a theoretical model to predict the band offsets at both lattice-matched and pseudomorphic strained-layer interfaces. The theory is based on the local-density- functional pseudopotential formalism, and the “model solid approach” of Van de Walle and Martin. The results can be most simply expressed in terms of an “absolute” energy level for each semiconductor, and deformation potentials that describe the effects of strain on the electronic bands. The model predicts reliable values for the experimentally observed lineups in Si/Ge, GaAs/InAs, and ZnSe/ZnS systems, and can be used to ex-plore which combinations of materials and configurations of the strains will lead to the desired electronic properties.

Author(s):  
Ahmad A. Mousa ◽  
Jamil M. Khalifeh

Structural, electronic, elastic and mechanical properties of ScM (M[Formula: see text][Formula: see text][Formula: see text]Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants ([Formula: see text], [Formula: see text] and [Formula: see text] confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.


2009 ◽  
Vol 23 (32) ◽  
pp. 5929-5934 ◽  
Author(s):  
T. JEONG

The electronic band structure of LuPd 2 Si 2 was studied based on the density functional theory within local density approximation and fully relativistic schemes. The Lu 4f states are completely filled and have flat bands around -5.0 eV. The fully relativistic band structure scheme shows that spin–orbit coupling splits the 4f states into two manifolds, the 4f7/2 and the 4f5/2 multiplet.


2008 ◽  
Vol 600-603 ◽  
pp. 575-578 ◽  
Author(s):  
A. Miranda ◽  
A. Estrella Ramos ◽  
M. Cruz Irisson

In this work, the effects of the diameter and morphology on the electronic band structure of hydrogenated cubic silicon carbide (b-SiC) nanowires is studied by using a semiempirical sp3s* tight-binding (TB) approach applied to the supercell model, where the Si- and C-dangling bonds on the surface are passivated by hydrogen atoms. Moreover, TB results (for the bulk) are compared with density functional calculations in the local density approximation. The results show that though surface morphology modifies the band gap, the change is more systematic with the thickness variation. As expected, hydrogen saturation induces a broadening of the band gap energy because of the quantum confinement effect.


2016 ◽  
Vol 94 (9) ◽  
pp. 865-876 ◽  
Author(s):  
Dj Guendouz ◽  
Z. Charifi ◽  
H. Baaziz ◽  
T. Ghellab ◽  
N. Arikan ◽  
...  

Electronic band structure, optical and thermodynamic properties of ternary hydrides MBeH3 (M = Li, Na, and K) were studied using ab initio density functional theory (DFT). The effect of the adopted approximation to the exchange-correlation functional of the DFT is explicitly investigated by considering four different expressions of two different classes (local-density approximation and generalized-gradient approximation). The calculated magnitude of B classifies MBeH3 (M = Li, Na, and K) as easily compressible materials. The bonding interaction in these compounds is quite complicated. The interaction between M and BeH6 is ionic and that between Be and H comprises both ionic and covalent characters. The electronic structure of the complex hydride was investigated by calculating the partial and total densities of states, and electron charge density distribution. Large gaps in the density of states appear at the Fermi energy of LiBeH3, NaBeH3, and KBeH3 indicating that these classes of hydrides are insulators. Optical properties, including the dielectric function, reflectivity, and absorption coefficient, each as a function of photon energy, are calculated and show an optical anisotropy for LiBeH3 and KBeH3. Through the quasi-harmonic Debye model, in which the phononic effects are considered, temperature dependence of volume V(T), bulk modulus B(T), and thermal expansion coefficient α(T), constant-volume and constant-pressure specific heat (Cv and Cp) and Debye temperature ΘD, the entropy S, and the Grüneisen parameter γ were calculated at wide pressure and temperature ranges. The principal aspect of the obtained results is the close similarity of MBeH3 (M = Li, Na, and K) compounds.


2016 ◽  
Vol 30 (04) ◽  
pp. 1650003 ◽  
Author(s):  
S. Benlamari ◽  
S. Amara Korba ◽  
S. Lakel ◽  
H. Meradji ◽  
S. Ghemid ◽  
...  

The structural, elastic, thermal and electronic properties of perovskite hydrides SrLiH3 and SrPdH3 have been investigated using the all-electron full-potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). For the exchange-correlation potential, local-density approximation (LDA) and generalized gradient approximation (GGA) have been used to calculate theoretical lattice parameters, bulk modulus, and its pressure derivative. The present results are in good agreement with available theoretical and experimental data. The three independent elastic constants [Formula: see text], [Formula: see text] and [Formula: see text] are also reported. From electronic band structure and density of states (DOSs), it is found that SrLiH3 is an insulator characterized by an indirect gap of 3.48 eV, while SrPdH3 is metallic with a calculated DOSs at Fermi energy of 0.745 states/eV-unit cell. Poisson’s ratio [Formula: see text], Young’s modulus (E), shear modulus (G), anisotropy factor (A), average sound velocities [Formula: see text] and density [Formula: see text] of these compounds are also estimated for the first time. The Debye temperature is deduced from the average sound velocity. Variation of elastic constants and bulk modulus of these compounds as a function of pressure is also reported. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.


2012 ◽  
Vol 501 ◽  
pp. 342-346 ◽  
Author(s):  
M.F.M. Taib ◽  
M.K. Yaakob ◽  
Amreesh Chandra ◽  
Abdul Kariem Mohd Arof ◽  
M.Z.A. Yahya

The electronic band structure, density of state and elastic properties of lead-free perovskite oxide SnTiO3 (ST) were investigated by employing first principles calculation using the Density Functional Theory (DFT) within local density approximation (LDA). The energy band gap was calculated from the separation between the Ti 3d (conduction band) and the maximum of O 2p (valence band). This gives an indirect band gap of 2.36 eV. The elastic constants and their pressure dependence were calculated up to 30 GPa and the independent elastic constants (C11, C12, and C44), bulk modules, B were obtained and analyzed. The results showed that SnTiO3 have a mechanical stability in cubic phase (Pm3m).


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Nicole Creange ◽  
Costel Constantin ◽  
Jian-Xin Zhu ◽  
Alexander V. Balatsky ◽  
Jason T. Haraldsen

We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simulate the electronic band structure and show the effects of impurity doping (0–3.91%) in graphene on the electron density, refractive index, optical conductivity, and extinction coefficient for each doping percentage. Here, gallium atoms are placed randomly (using a 5-point average) throughout a 128-atom sheet of graphene. These calculations demonstrate the effects of hole doping due to direct atomic substitution, where it is found that a disruption in the electronic structure and electron density for small doping levels is due to impurity scattering of the electrons. However, the system continues to produce metallic or semimetallic behavior with increasing doping levels. These calculations are compared to a purely theoretical 100% Ga sheet for comparison of conductivity. Furthermore, we examine the change in the electronic band structure, where the introduction of gallium electronic bands produces a shift in the electron bands and dissolves the characteristic Dirac cone within graphene, which leads to better electron mobility.


2016 ◽  
Vol 846 ◽  
pp. 734-739 ◽  
Author(s):  
N.H. Hussin ◽  
Mohamad Fariz Mohamad Taib ◽  
F.W. Badrudin ◽  
N.A. Johari ◽  
Nunshaimah Salleh ◽  
...  

The geometry optimization of the tetragonal supercell 1x1x2 (P4mm, 99 space group) of PZT and PSnZT were calculated using different exchange correlation functional such as Local Density Approximate (LDA-CAPZ) and Generalized Gradient Approximation (GGA-PBE & GGA-PBEsol).The calculation using functional GGA-PBEsol exhibits the most accurate values of lattice parameter and volume of structure relative to the experiment results with typical error of approximately 1% underestimate (only for PZT-as reference materials). The electronic band structure and density of state (DOS) were also studied in order to understand the electron density and hybrization between cation and anion in the compound. The density of state studies indicated existing of hybridizations among anion O 2p, cation Pb 6s/Sn 5s (special lone pair) and the Ti 3d/Zr 4d states of PZT and PSnZT compound. An indirect band gap was respectively obtained for both cubic PZT and PSnZT at the F-G and Q-G point with 3.154 eV and 2.571 eV.


2015 ◽  
Vol 70 (9) ◽  
pp. 721-728
Author(s):  
G. Subhashree ◽  
S. Sankar ◽  
R. Krithiga

AbstractStructural, electronic, and superconducting properties of carbides and nitrides of vanadium (V), niobium (Nb), and tantalum (Ta) (group V transition elements) have been studied by computing their electronic band structure characteristics. The electronic band structure calculations have been carried out based on the density functional theory (DFT) within the local density approximation (LDA) by using the tight binding linear muffin tin orbital method. The NaCl-type cubic structures of MN and MC (M=V, Nb, Ta) compounds have been confirmed from the electronic total energy minimum of these compounds. The ground state properties, such as equilibrium lattice constant (a0), bulk modulus (B), and Wigner–Seitz radius (S0) are determined and compared with available data. The electronic density of states reveals the metallic nature of the chosen materials. The electronic specific heat coefficient, Debye temperature, and superconducting transition temperature obtained from the band structure results are found to agree well with the earlier reported literature.


2009 ◽  
Vol 23 (26) ◽  
pp. 3065-3079 ◽  
Author(s):  
S. DRABLIA ◽  
H. MERADJI ◽  
S. GHEMID ◽  
N. BOUKHRIS ◽  
B. BOUHAFS ◽  
...  

We have performed first-principle full-potential (linear) augmented plane wave plus local orbital calculations (FP-L/APW + l0) with density functional theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA), with the aim to determine and predict the electronic and optical properties of rocksalt BaO , BaS , BaSe , BaTe and BaPo compounds. First we present the main features of the electronic properties of these compounds, where the electronic band structure shows that the fundamental energy gap is indirect (Γ–X) for all compounds except for BaO which is direct (X–X). The different interband transitions have been determined from the imaginary part of the dielectric function. The real and imaginary parts of the dielectric function and the reflectivity are calculated. We have presented the assignment of the different optical transitions existing in these compounds from the imaginary part of the dielectric function spectra with respect to their correspondence in the electronic band. We have also calculated the pressure and volume dependence of the optical properties for these compounds.


Sign in / Sign up

Export Citation Format

Share Document