Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage

2007 ◽  
Vol 1041 ◽  
Author(s):  
Erin Whitney ◽  
Anne C. Dillon ◽  
Calvin Curtis ◽  
Chaiwat Engtrakul ◽  
Kevin O'Neill ◽  
...  

AbstractExperimental wet chemical approaches have been demonstrated in the synthesis of a new chainlike (C60-Fe-C60-Fe)n complex. This structure has been proposed based on 13C solid-state nuclear magnetic resonance, electron paramagnetic resonance, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature-programmed desorption. The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Volumetric measurements at 77 K and 2 bar show a hydrogen adsorption capacity of 0.5 wt%. Interestingly, the BET surface area is ∼31 m2/g after degassing, which is approximately an order of magnitude less than expected given the measured experimental hydrogen capacity. Nitrogen and hydrogen isotherms performed at 75 K also show a marked selectivity for hydrogen over nitrogen for this complex, indicating hidden surface area for hydrogen adsorption.

2012 ◽  
Vol 476-478 ◽  
pp. 954-957 ◽  
Author(s):  
Zhao Hui Ni ◽  
Xiao Li Kou ◽  
Xin Yu Ding ◽  
Cun Wang Ge ◽  
Xiao Hui Jing

In order to study the ion effect on titania phase structure, crystallite size, and photocatalytic activity, Rb+-doped TiO2 nanoparticles were prepared via a modified sol-gel method and characterized by means of X-ray diffraction, Energy Dispersive X-rays spectroscopy and transmission electron microscopy. The photocatalytic activity of the elaborated powders was studied following the degradation of methyl orange. The results indicate that doping Rb+ increases the BET surface area of TiO2 crystals, decreases the crystal size, reduces the diminishing rates of surface area with increasing calcinations temperature, raises the temperature at which anatase changes into rutile phase, and so significantly increases the photocatalytic activity of TiO2. The kinetics of the methyl orange degradation fits Langmuir-Hinshelwood kinetics model well.


2011 ◽  
Vol 356-360 ◽  
pp. 698-703 ◽  
Author(s):  
Xian Long Zhang ◽  
Wei Ping Jiang ◽  
Xue Ping Wu ◽  
Bo Wen Shi ◽  
Bao Jun Yang ◽  
...  

Palygorskite is widely used as industrial adsorbent and also potential for flue gas desulfurization by adsorption of SO2. The effect of thermal treatment on Palygorskite’s structural properties and its performance in SO2adsorption were investigated. The textural and structural properties of the prepared palygorskite adsorbent were characterized by X-ray diffraction, transmission electron microscopy and temperature programmed desorption. The result showed the channel of Palygorskite is partial collapsed and the structure is not changed ultimately when thermally treated below 300 °C. The structure of Palygorskite is Gradually changed when the treating temperature is higher than 300 °C and is damaged entirety till 800 °C. As a result, the adsorption capacity of SO2on Palygorskite decreased drastically. It is suggested that the presences of surface adorbed water and zeolitic water which occupy a large number of adsorption sites are disadvantage for the adsorption of SO2, and dissimilarly the presence of crystal-bonded water is favorable.


2008 ◽  
Vol 368-372 ◽  
pp. 1130-1132
Author(s):  
Hong Zhi Wang ◽  
Qi Zhang ◽  
Yun Xin Gu ◽  
Yao Gang Li ◽  
Mei Fang Zhu

Ti0.6Cr0.4OxNy bimetallic metal oxynitride nano powder was synthesized by ammonolysis of the nanosized Cr2O3/TiO2 composite powder with n(Ti):n(Cr)=6:4 at 800oC for 8 h. The precursor and the resulting oxynitride were characterized by Auger electron spectroscope (AES), X-ray diffraction analysis (XRD), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and BET surface area techniques. The result indicated that the precursor was homogenous mixture of Cr2O3 and TiO2 with high BET surface area. The as-synthesized oxynitride powder contains only Ti0.6Cr0.4OxNy with cubic structure. The BET surface area of the oxynitride powder is 37.42 m2/g and the particle size is in the range of 20~30 nm.


NANO ◽  
2015 ◽  
Vol 10 (04) ◽  
pp. 1550059 ◽  
Author(s):  
Lipeeka Rout ◽  
Prashanth Rengasamy ◽  
Basanti Ekka ◽  
Aniket Kumar ◽  
Priyabrat Dash

We report the synthesis of TiO 2-supported monometallic Ag , Sn and bimetallic AgSn nanoparticle catalysts prepared using sol–gel method via a rational nanoparticle encapsulation route. The samples were thoroughly characterized by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) with image mapping and Brunauer–Emmett–Teller (BET) surface area analyzer. The supported bimetallic AgSn catalyst had the anatase structure, surface area of 50 m2/g and 2.6 ± 0.6 nm particle size. The efficiency of the catalysts was evaluated on photodegradation of methylene blue (MB) dye under visible light. The photocatalytic activity of MB was significantly enhanced in the presence of bimetallic AgSn nanoparticles (NPs) as compared to individual metal nanoparticles. Reusability study of the photocatalyst showed that the catalyst can be reused upto 5 runs with minimal loss in activity. Kinetic study revealed that the degradation reaction follows a pseudo first-order pathway.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Antonio Jesús Fernández-Ropero ◽  
Bartosz Zawadzki ◽  
Krzysztof Matus ◽  
Wojciech Patkowski ◽  
Mirosław Krawczyk ◽  
...  

This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).


2006 ◽  
Vol 927 ◽  
Author(s):  
Erin S. Whitney ◽  
Calvin J. Curtis ◽  
Chaiwat Engtrakul ◽  
Mark F. Davis ◽  
Tining Su ◽  
...  

ABSTRACTExperimental wet chemical approaches to complex an iron atom with two C60 fullerenes, representing a new molecule, dubbed a “bucky dumbbell,” have been demonstrated. The structure of this molecule has been determined by 13C solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature programmed desorption (TPD). The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Further development of these molecules could make them ideal candidates for onboard vehicular hydrogen storage.


2017 ◽  
Vol 6 (3) ◽  
pp. 207
Author(s):  
Y.H. Taufiq-Yap ◽  
A. Raslan ◽  
R. Irmawati

<p>Vanadyl pyrophosphate (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> catalysts synthesized via VOPO<sub>4</sub>·2H<sub>2</sub>O were investigated by using BET surface area measurement, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Temperature-Programmed Techniques (TPD and TPRS). H<sub>3</sub>PO<sub>4</sub> and H<sub>4</sub>P<sub>2</sub>O<sub>7</sub> were used as the phosphorus source. Only pyrophosphate phase was observed for both final catalysts after 75 hours of calcination in a reaction flow of <em>n</em>-butane/air mixture (0.75% <em>n</em>-butane/air). However, catalyst derived from H<sub>4</sub>P<sub>2</sub>O<sub>7</sub> based preparation (denoted VPD<sub>pyro</sub>) exhibit better crystallinity and slightly higher BET surface area compared to the H<sub>3</sub>PO<sub>4</sub> based preparation (denoted VPD<sub>ortho</sub>). The nature of the oxidants for both catalysts was investigated by O<sub>2</sub>-TPD. For VPD<sub>pyro</sub>, TPD showed an oxygen peak maximum at 986 K and a shoulder at 1003 K, whereas for VPD<sub>ortho</sub>, the oxygen was desorbed as two peaks maxima at 966 and 994 K. The total amount of oxygen desorbed thermally from VPD<sub>pyro</sub> (3.60×10<sup>20</sup> atom×g<sup>-1</sup>) is higher than that obtained for VPD<sub>ortho</sub> (3.07×10<sup>20</sup> atom×g<sup>-1</sup>). VPD<sub>pyro</sub> displayed a slightly improved activity and selectivity for <em>n</em>-butane oxidation. A proper amount of V<sup>5+</sup> species may have an effect on the enhancement of the catalytic activity.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Fu Ding ◽  
Yajing Zhang ◽  
Guijin Yuan ◽  
Kangjun Wang ◽  
Ileana Dragutan ◽  
...  

A series of Ni/SiO2catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF.


2015 ◽  
Vol 1112 ◽  
pp. 62-65 ◽  
Author(s):  
Eka Sri Yusmartini ◽  
Dedi Setiabudidaya ◽  
Ridwan ◽  
Marsi ◽  
Faizal

Nanoparticles, particles of size 10-9have a high potential as water, waste water and air pollution treatment. In this research, nanoscale iron particles were synthesized by reduction of Fe2SO47 H2O by NaBH4at low temperature to avoid oxidation during the process. Characterization of the particles based on particle size, material structure, surface morphology and the composition of forming element was done by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectometry (EDS), respectively. Surface area and magnetic character was measured by BET surface area and vibrating sample magnetometry (VSM), respectively. Morfological observation showed that structured core-shell of size < 44 nm and shell of size ~ 3 nm with saturated magnetization value ~ 132 emu g‾¹ has been formed.


2009 ◽  
Vol 24 (9) ◽  
pp. 2845-2854 ◽  
Author(s):  
Balaji P. Mandal ◽  
Vinita Grover ◽  
Mrinal R. Pai ◽  
Avesh K. Tyagi

Effect of H2O2 on synthesis and powder properties such as surface area and agglomerate size of nanocrystalline Ce0.8M0.2O1.90 (M: Sm, Gd) was explored by treating cerium nitrate and rare-earth nitrate with NaOH in the presence/absence of H2O2. The resultant products were characterized by x-ray diffraction, Raman spectroscopy, thermo-gravimetry–differential thermal analysis, dynamic light scattering, surface area analysis, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The presence of H2O2 was found to have a profound effect on powder properties such as surface area and particle size of these doped ceria samples and results in smaller crystallite size, softer agglomerates, and larger surface area. A mechanism is proposed to explain the observed better powder properties of the samples. It was also shown that the samples prepared in the presence of H2O2 can lower the conversion temperature of CO to CO2, proving these to be better catalysts. Interestingly, temperature-programmed reduction studies on Sm3+-doped samples showed that the doping in conjunction with the use of H2O2 leads to enhanced reduction properties of the samples over multiple cycles.


Sign in / Sign up

Export Citation Format

Share Document