Preparation of Nitride Fuel by Spark Plasma Sintering Technique

2007 ◽  
Vol 1043 ◽  
Author(s):  
Hiroaki Muta ◽  
Ken Kurosaki ◽  
Masayoshi Uno ◽  
Shinsuke Yamanaka

AbstractSPS technique was applied for fabrication of UN pellets. The dense sample was obtained with relatively low sintering temperature without any milling process and sintering additive, indicating that the SPS technique is suitable for fabrication of nitride fuel. The thermal conductivity and Young's modulus in axial direction were higher than those of reported values. EBSP analysis and electronic calculation supposed that weak grain orientation in [100] direction of the sample lead to these higher values.

2018 ◽  
Vol 281 ◽  
pp. 125-130
Author(s):  
Nan Lu ◽  
Jia Xi Liu ◽  
Gang He ◽  
Jiang Tao Li

MgO/Graphene ceramic composites were fabricated by combining combustion synthesis with spark plasma sintering. MgO/Graphene mixture powders were prepared by the combustion reaction between Mg powders and CO2 gas. Dense MgO/Graphene composites were fabricated by spark plasma sintering (SPS) using LiF as the sintering additive. The effect of the sintering temperature on microstructure and mechanical properties of the prepared MgO/Graphene ceramics was discussed. The sintering temperature of the MgO/Graphene mixture powders increased from 900°C to 1300°C. The highest density of 3.43g/cm3 and hardness of 2133MPa were obtained at 1100°C. Compared with monolithic MgO ceramics, the hardness of MgO/Graphene ceramics at the same sintering temperature was increased from 840MPa to 2133MPa.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4768
Author(s):  
Sheng Ge ◽  
Xiumin Yao ◽  
Yingying Liu ◽  
Hang Duan ◽  
Zhengren Huang ◽  
...  

Silicon carbide (SiC) ceramics with Y2O3-Er2O3 as sintering additives were prepared by spark plasma sintering (SPS). The effects of sintering temperatures and Y2O3-Er2O3 contents on the microstructure, thermal conductivity, electrical, and mechanical properties were investigated. The increasing of sintering temperatures promoted the densification of SiC ceramics, thus increasing the thermal conductivity and electrical resistivity. With the increase of the sintering additive contents, the electrical resistivity increased due to the formation of the electrical insulating network; and the thermal conductivity first increased and then decreased, which was related to the content and distribution of the secondary phase among the SiC grains. The SiC ceramics sintered at 2000 °C with 9 wt.% Y2O3-Er2O3 exhibited higher electrical resistivity and thermal conductivity, which were 4.28 × 109 Ω·cm and 96.68 W/m·K, respectively.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Sherzod Kurbanbekov ◽  
Mazhyn Skakov ◽  
Viktor Baklanov ◽  
Batyrzhan Karakozov

2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2014 ◽  
Vol 788 ◽  
pp. 329-333
Author(s):  
Rui Zhou ◽  
Xiao Gang Diao ◽  
Jun Chen ◽  
Xiao Nan Du ◽  
Guo Ding Yuan ◽  
...  

Effects of sintering temperatures on the microstructure and mechanical performance of SPS M3:2 high speed steel prepared by spark plasma sintering was studied. High speed steel sintering curve of continuous heating from ambient temperature to 1200°C was estimated to analyze the sintering processes and sintering temperature range. The sintering temperature within this range was divided into groups to investigate hardness, relative density and microstructure of M3:2 high-speed steel. Strip and quadrate carbides were observed inside the equiaxed grains. SPS sintering temperature at 900°C can lead to nearly full densification with grain size smaller than 20μm. The hardness and bending strength are higher than that of the conventionally powder metallurgy fabricated ones sintered at 1270°C. However, fracture toughness of the high speed steel is lower than that of the conventional powder metallurgy steels. This can be attributed to the shape and distribution of M6C carbides which reduce the impact toughness of high speed steels.


2007 ◽  
Vol 534-536 ◽  
pp. 1489-1492 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Jong Won Kum ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Pyuck Pa Choi ◽  
...  

Dispersion-strengthened copper with TiB2 was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at 650°C for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yanlin Pan ◽  
Daoping Xiang ◽  
Ning Wang ◽  
Hui Li ◽  
Zhishuai Fan

Fine-grained W-6Ni-4Mn alloys were fabricated by spark plasma sintering (SPS) using mechanical milling W, Ni and Mn composite powders. The relative density of W-6Ni-4Mn alloy increases from 71.56% to 99.60% when it is sintered at a low temperature range of 1000–1200 °C for 3 min. The spark plasma sintering process of the alloy can be divided into three stages, which clarify the densification process of powder compacts. As the sintering temperature increases, the average W grain size increases but remains at less than 7 µm and the distribution of the binding phase is uniform. Transmission electron microscopy (TEM) observation reveals that the W-6Ni-4Mn alloy consists of the tungsten phase and the γ-(Ni, Mn, W) binding phase. As the sintering temperature increases, the Rockwell hardness and bending strength of alloys initially increases and then decreases. The optimum comprehensive hardness and bending strength of the alloy are obtained at 1150 °C. The main fracture mode of the alloys is W/W interface fracture.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1276 ◽  
Author(s):  
Dariusz Garbiec ◽  
Volf Leshchynsky ◽  
Alberto Colella ◽  
Paolo Matteazzi ◽  
Piotr Siwak

Combining high energy ball milling and spark plasma sintering is one of the most promising technologies in materials science. The mechanical alloying process enables the production of nanostructured composite powders that can be successfully spark plasma sintered in a very short time, while preserving the nanostructure and enhancing the mechanical properties of the composite. Composites with MAX phases are among the most promising materials. In this study, Ti/SiC composite powder was produced by high energy ball milling and then consolidated by spark plasma sintering. During both processes, Ti3SiC2, TiC and Ti5Si3 phases were formed. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction study showed that the phase composition of the spark plasma sintered composites consists mainly of Ti3SiC2 and a mixture of TiC and Ti5Si3 phases which have a different indentation size effect. The influence of the sintering temperature on the Ti-SiC composite structure and properties is defined. The effect of the Ti3SiC2 MAX phase grain growth was found at a sintering temperature of 1400–1450 °C. The indentation size effect at the nanoscale for Ti3SiC2, TiC+Ti5Si3 and SiC-Ti phases is analyzed on the basis of the strain gradient plasticity theory and the equation constants were defined.


Sign in / Sign up

Export Citation Format

Share Document