Current Conduction Mechanism for Low-molecular Organic Nonvolatile Memory

2008 ◽  
Vol 1071 ◽  
Author(s):  
Sungho Seo ◽  
Woo-sik Nam ◽  
Gon-sub Lee ◽  
Jea-gun Park

AbstractOrganic devices fabricated with a top metal layer/conductive organic layer/middle metal layer/conductive organic layer/bottom metal layer structure have been reported to demonstrate nonvolatile memory behavior such as an after writing (Ion)/after erasing (Ioff) performance of > 1 × 101 and a response time of ∼10 ns, when the organic conductive layers were AIDCN (2-amino-4, 5-imidazoledicarbonitrile), Alq3 (Aluminum tris(8-hydroxyquinoline)), or α-NPD. We fabricated an organic nonvolatile memory device with a structure of α-NPD/Al nanocrystals surrounded by Al2O3/α-NPD/Al, where α-NPD was N,N'-bis(1-naphthyl)-1,1'biphenyl4-4''diamine. A layer of Al nanocrystals, confirmed by a 1.25-MV high voltage transmission-electron-microscope, was uniformly produced between the α-NPD layers by Al layer evaporation at 1.0 Å/sec on the α-NPD followed by O2 plasma oxidation. We confirmed a conduction bistability of ∼102 and a threshold voltage for a set state of 3 V. Al nanocrystals surrounded by amorphous Al2O3 were formed in the α-NPD. They presented seven different reversible current paths for an electron charge or discharge on the nanocrystals. The current slightly increased with an applied bias from 0 V to Vth (a high resistance state (Ioff)), abruptly increased with an applied bias from Vth to Vp, decreased with an increasing applied bias from Vp to Ve (a negative differential resistance (NDR) region), and slightly increased with an applied bias above Ve. After sweeping the first applied voltage from 0 to 10 V (erase), a second applied bias was swept from 0 to Vp (program), where the current followed a high resistance state (Ioff). Next, a third applied bias was swept from 0 to Vp again, where the current followed a low resistance state (Ion). Surprisingly, the ratio of Ion to Ioff was ∼1×102, which is enough current difference to be nonvolatile memory behavior. These I-V characteristics under a positive applied bias were symmetrically repeated under a negative applied bias. All the current sweeping paths were reproducible and symmetrical for an applied bias polarity. In particular, our device demonstrated multi-level nonvolatile memory behavior. It also revealed the current conduction mechanism for each of its operation regions. We observed that the high resistance and low resistance regions followed space-charge-limited current conduction, the Vth to Vp and VNDR to Ve regions followed precisely thermionic-field-emission current conduction, and the above Ve regions followed space-charge-limited current conduction.

2020 ◽  
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

Abstract The resistive switching (RS) mechanism of hybrid organic-inorganic perovskites is an open question until now. Here, a switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetric electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by a trap-controlled SCLC conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


2021 ◽  
Vol 10 (2) ◽  
pp. 320-327
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

AbstractThe resistive switching (RS) mechanism of hybrid organic-inorganic perovskites has not been clearly understood until now. A switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetric electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by a trap-controlled space-charge-limited conduction (SCLC) conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


2020 ◽  
Vol 20 (5) ◽  
pp. 3283-3286 ◽  
Author(s):  
Yuehua An ◽  
Xia Shen ◽  
Yuying Hao ◽  
Pengfei Guo ◽  
Weihua Tang

Conductive filament mechanism can explain major resistance switching behaviors. The forming/deforming of the filaments define the high/low resistance states. The ratio of high/low resistance depends on the characterization of the filaments. In many oxide systems, the oxygen vacancies are important to forming the conductive filaments for the resistance switching behaviors. As ultrawide band gap semiconductor, Ga2O3 has very high resistance for its high resistance state, while its low resistive state has relative high resistance, which normally results in low ratio of high/low resistance. In this letter, we report a high ratio of high/low resistance by ultraviolet radiation. The I–V characteristics of Au/Ti/β-Ga2O3/W sandwich structure device shows that the HRS to LRS ratio of 5 orders is achieved.


2003 ◽  
Vol 803 ◽  
Author(s):  
Rong Zhao ◽  
Tow Chong Chong ◽  
Lu Ping Shi ◽  
Pik Kie Tan ◽  
Hao Meng ◽  
...  

ABSTRACTThe electrical induced structural transformation of Ge2Sb2Te5 thin film in phase change memory device was investigated using micro-Raman spectroscopy and transmission electronic microscopy (TEM). Selected area electron diffraction (SAD) pattern showed that the electrical-induced Ge2Sb2Te5 film was crystallized into a face-centered cubic structure. Micro-Raman spectra show that the Ge2Sb2Te5 active layer at the high resistance state exhibited two minor peaks superposed on the broad peak after several switch cycles, which is identical to those of the Ge2Sb2Te5 active layer at the low resistance state. This is most likely due to the accumulation of segregated crystallites. TEM results suggest that the existence of nano-sized nuclei clusters resulted in the reduced resistance for the Ge2Sb2Te5 active layer at the high resistance state after first several switches. The dependence of resistance on the cycle number indicates that the deterioration of the Ge2Sb2Te5 active layer is resulted from the incomplete amorphization process, which is consistent with the micro-Raman results.


2020 ◽  
Vol 53 (39) ◽  
pp. 395101 ◽  
Author(s):  
Shih-Kai Lin ◽  
Cheng-Hsien Wu ◽  
Min-Chen Chen ◽  
Ting-Chang Chang ◽  
Chen-Hsin Lien ◽  
...  

2020 ◽  
Vol 20 (8) ◽  
pp. 4740-4745
Author(s):  
Shin-Yi Min ◽  
Won-Ju Cho

In this study, we fabricated a resistive random access memory (ReRAM) of metal-insulator-metal structures using a hydrogen silsesquioxane (HSQ) film that was deposited by a low-cost solution process as a resistance switching (RS) layer. For post-deposition annealing (PDA) to improve the switching performance of HSQ-based ReRAMs, we applied high energy-efficient microwave irradiation (MWI). For comparison, ReRAMs with an as-deposited HSQ layer or a conventional thermally annealed (CTA) HSQ layer were also prepared. The RS characteristics, molecular structure modification of the HSQ layer, and reliability of the MWI-treated ReRAM were evaluated and compared with the as-deposited or CTA-treated devices. Typical bipolar RS (BRS) behavior was observed in all the fabricated HSQ-based ReRAM devices. In the low-voltage region of the high-resistance state (HRS) as well as the low-resistance state, current flows through the HSQ layer by an ohmic conduction mechanism. However, as the applied voltage increases in HRS, the current slope increases nonlinearly and follows the Poole–Frenkel conduction mechanism. The RS characteristics of the HSQ layer depend on the molecular structure, and when the PDA changes from a cage-like structure to a cross-linked network, memory characteristics are improved. In particular, the MWI-treated HSQ ReRAM has the largest memory window at the smallest operating power and demonstrated a stable endurance during the DC cycling test over 500 times and reliable retention at room (25 °C) and high (85 °C) temperatures for 104 seconds.


2015 ◽  
Vol 15 (10) ◽  
pp. 7569-7572 ◽  
Author(s):  
Sukhyung Park ◽  
Kyoungah Cho ◽  
Jungwoo Jung ◽  
Sangsig Kim

In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.


2020 ◽  
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

Abstract The resistive switching (RS) mechanism of hybrid organic-inorganic perovskites is an open question until now. Here, a switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetry electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by an interface trap-controlled SCLC mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


2018 ◽  
Vol 44 (12) ◽  
pp. 1160-1162 ◽  
Author(s):  
D. O. Filatov ◽  
V. V. Karzanov ◽  
I. N. Antonov ◽  
O. N. Gorshkov

Sign in / Sign up

Export Citation Format

Share Document