scholarly journals Electric Modulation of Conduction in MAPbBr3 Single Crystals

2020 ◽  
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

Abstract The resistive switching (RS) mechanism of hybrid organic-inorganic perovskites is an open question until now. Here, a switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetry electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by an interface trap-controlled SCLC mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.

2020 ◽  
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

Abstract The resistive switching (RS) mechanism of hybrid organic-inorganic perovskites is an open question until now. Here, a switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetric electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by a trap-controlled SCLC conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


2021 ◽  
Vol 10 (2) ◽  
pp. 320-327
Author(s):  
Shanming Ke ◽  
Shangyu Luo ◽  
Jinhui Gong ◽  
Liwen Qiu ◽  
Renhong Liang ◽  
...  

AbstractThe resistive switching (RS) mechanism of hybrid organic-inorganic perovskites has not been clearly understood until now. A switchable diode-like RS behavior in MAPbBr3 single crystals using Au (or Pt) symmetric electrodes is reported. Both the high resistance state (HRS) and low resistance state (LRS) are electrode-area dependent and light responsive. We propose an electric-field-driven inner p-n junction accompanied by a trap-controlled space-charge-limited conduction (SCLC) conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr3 single crystals.


2014 ◽  
Vol 60 (1) ◽  
pp. 1057-1062 ◽  
Author(s):  
K. Sun ◽  
K. Zhang ◽  
F. Wang ◽  
W. Sun ◽  
T. Lu ◽  
...  

2011 ◽  
Vol 687 ◽  
pp. 167-173 ◽  
Author(s):  
Chih Yi Liu ◽  
Po Wei Sung ◽  
Chun Hung Lai ◽  
Hung Yu Wang

SiO2thin films were fabricated as resistive layers of Cu/SiO2/Pt devices to investigate resistive switching properties. A thermal annealing was performed to allow for the diffusion of Cu ions into the SiO2thin films, leading to the formation of Cu-doped SiO2layers. Occurrence probabilities of the resistive switching and initial resistance-states of the devices were influenced by SiO2thickness, which was dependent on the Cu diffusion status within the SiO2layer. The resistive switching behaviors were characterized by the voltage sweeping mode and the current sweeping mode. The current sweeping mode provided a desired compliance current to well control the resistive switching from the high resistance-state to the low resistance-state (SET). Therefore, the large RESET (from the low resistance-state to the high resistance-state) current was not inherent in the device, due to poor control of the compliance current by the voltage sweeping mode. The current sweeping mode is a simple method to characterize the RESET current.


Author(s):  
Е.В. Окулич ◽  
М.Н. Коряжкина ◽  
Д.С. Королев ◽  
А.И. Белов ◽  
М.Е. Шенина ◽  
...  

Resistive switching of memristive structures based on films of yttria stabilized zirconia (40 nm), irradiated with Si+ ions with an energy of 6 keV and a dose of 5.4∙1015 cm-2, was studied. It is established that ion irradiation leads to an increase in the stability of the parameters of resistive switching. This improvement is due to the fact that the diameter of the filaments as a result of irradiation is limited to the lateral size of the region of the individual cascades of displacement. Oxidation of such filaments in the process of resistive switching occurs more efficiently, which leads to an increase in resistance in a high resistance state.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Bai Sun ◽  
Qiling Li ◽  
Yonghong Liu ◽  
Peng Chen

Multiferroic BiCoO 3 nanoflowers were synthesized by a hydrothermal process. The BiCoO 3 nanoflowers show superior bipolar resistive switching characteristics. The typical current–voltage (I–V) characteristics of the Ag / BiCoO 3/ Ag structures exhibit an extreme change in resistance between high resistance state (HRS) or "OFF" state and low resistance state (LRS) or "ON" state with ON/OFF ratio ~ 105.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Byeongjeong Kim ◽  
Chandreswar Mahata ◽  
Hojeong Ryu ◽  
Muhammad Ismail ◽  
Byung-Do Yang ◽  
...  

Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.


2013 ◽  
Vol 1577 ◽  
Author(s):  
Rajesh K. Katiyar ◽  
Pankaj Misra ◽  
G. L Sharma ◽  
Gerardo Morell ◽  
J. F Scott ◽  
...  

ABSTRACTNonvolatile unipolar resistive switching has been observed in Sm doped BFO thin films in Pt/Sm: BFO/SRO stack geometry. The initial forming voltage was found to be ∼ 11 V. After the forming process repeatable switching of the resistance of Sm:BFO film was obtained between low and high resistance states with nearly constant resistance ratio ∼ 105 and non overlapping switching voltages in the range of 0.7-1 V and 4-6 V respectively. The temperature dependent measurements of the resistance of the device indicated metallic and semiconducting conduction behavior in low and high resistance states respectively. The current conduction mechanism of the Pt/Sm:BFO/SRO device in low resistance states was found to be dominated by the Ohmic behavior while in case of high resistance state and at high voltages it deviated significantly from normal Ohmic behavior and was found to correspond the Pool-Frankel (PF) emission. The Pt/Sm:BFO/SRO structure also showed efficient photo-response in high and low resistance states with increase in photocurrent which was significantly higher in low resistance state when illuminated with white light.


2004 ◽  
Vol 830 ◽  
Author(s):  
Rickard Fors ◽  
Sergey I. Khartsev ◽  
Alexander M. Grishin

ABSTRACTHeteroepitaxial CeO2(80nm)/L0.67Ca0.33MnO3(400nm) film structures have been pulsed laser deposited on LaAlO3(001) single crystals to fabricate two terminal resistance switching devices. Ag/CeO2/L0.67Ca0.33MnO3 junctions exhibit reproducible switching between a high resistance state (HRS) with insulating properties and a semiconducting or metallic low resistance state (LRS) with resistance ratios up to 105. Reversible electrical switching is a polar effect achievable both in continuous sweeping mode and in the pulse regime.


Sign in / Sign up

Export Citation Format

Share Document