Development of Al2O3-ZnO/Ca3Co4O9 Module for Thermoelectric Power Generation

2009 ◽  
Vol 1166 ◽  
Author(s):  
Paolo Mele ◽  
Kaname Matsumoto ◽  
Takeshi Azuma ◽  
Keita Kamesawa ◽  
Saburo Tanaka ◽  
...  

AbstractPure and Al2O3(2%, 5%, 8%) doped sintered ZnO (n-type) and pure sintered Ca3Co4O9 (p-type) pellets were prepared by conventional solid state synthesis starting from the oxides. The sintered pellets were cut by a diamond saw in a pillar shape (15 mm×5 mm×5 mm) for experimental checks. The best doped sample was 2 % Al2O3 ZnO showing Seebeck coefficient S = -180 mV/K and electrical conductivity σ = 8 S/cm at 400°C, while thermal conductivity κ = 1.8 W/m×K at 600°C. Typical values for Ca3Co4O9 were S = 82.5 mV/K and σ = 125 S/cm at 800°C, while κ = 1.01 W/m×K at 600°C. Several modules fabricated by elements cut from sintered pellets were tested and the best performance was obtained in the module formed by six 2 % Al2O3ZnO/ Ca3Co4O9 couples, that generated an output power P = 300 mV at 500°C (when ΔT = 260°C).

2008 ◽  
Vol 1102 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
T. Hill ◽  
M. Black ◽  
S. B. Judah ◽  
...  

AbstractThermoelectric materials are being important due to their application in both thermoelectric power generation and microelectronic cooling. The thermoelectric power generations convert the heat change to electricity. The waste of heat could be useful if the thermoelectric power generation is applied. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. A high thermal conductivity causes too much heat leakage through heat conduction. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. In this study, we prepared thermoelectric generator devices of SiGe at the thickness of 112 nm using the ion beam assisted deposition (IBAD) system. Rutherford Backscattering Spectrometry (RBS) analysis was used for the elemental analysis. The 5 MeV Si ion bombardment was performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the film to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardment we measured the cross plane Seebeck coefficient, electrical conductivity by Van der Pauw method, and thermal conductivity by 3w method for different fluences.


2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


Author(s):  
Kazuaki Yazawa ◽  
Ali Shakouri

An analytic model for optimizing thermoelectric power generation system is developed and utilized for parametric studies. This model takes into account the external thermal resistances with hot and cold reservoirs. In addition, the spreading thermal resistance in the module substrates is considered to find the impact of designing small fraction of thermo elements per unit area. Previous studies are expanded by a full optimization of the electrical and thermal circuits. The optimum condition satisfies both electrical load resistance match with the internal resistance and the thermal resistance match with the heat source and the heat sink. Thermoelectric element aspect ratio and fill factor are found to be key parameters to optimize. The optimum leg length and the maximum output power are determined by a simple formula. The output power density per mass of the thermoelectric material has a peak when thermo elements cover a fractional area of ∼1%. The role of the substrate heat spreading for thermoelectric power generation is equally significant as thermoelement. For a given heat source, the co-optimization of the heat sink and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to find the energy payback for the power generation system. The model includes both the air cooled heat sinks and the water cooled micro channels. We find that one can reduce the mass of thermoelement to around 3∼10% of that in commercial modules for the same output power, as long as the module and elements are designed properly. Also one notes that higher heat flux sources have significantly larger energy payback and reduced cost per output power.


2011 ◽  
Vol 1325 ◽  
Author(s):  
Kazuaki Yazawa ◽  
Ali Shakouri

ABSTRACTA recently developed generic model of a thermoelectric power generation system suggests a promising future for cost effective and scalable power generation. The model is based on co-optimizing the thermoelectric module together with the heat sink. Using this model, efficiency at maximum output power is calculated. It is shown that this approaches the Curzon-Ahlborn limit at very large Z values which is consistent with thermodynamic systems with irreversible heat engines. However, this happens only when the thermal resistances of the thermoelectric device with hot and cold heat sinks exactly match. For asymmetrical thermal resistances, the efficiency at maximum output power is different. This is consistent with the very recent results for the thermodynamic engines. Finally, we study the impact of lowering the thermal conductivity of the thermoelectric material or increasing its power factor and how these affect the performance of the thermoelectric power generation system.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Dianta Ginting ◽  
Chan-Chieh Lin ◽  
Jong-Soo Rhyee

Thermoelectric power generation is an energy conversion technology from heat to electric energy, which can be applied to waste heat power conversion. Among thermoelectric materials (TE), PbTe-PbSe-PbS quaternary alloys and composites are promising candidates for thermoelectric power generation applications in the mid-temperature operating range from 500 to ~850 K. Besides, the thermoelectric performance of quaternary alloys and composites is not fully optimized regarding its composition and synthesis process. In the quaternary system, PbTe-PbSe-PbS, it was found that PbS will form nanoprecipitation in the matrix of quaternary alloy for a small content of PbS (≤0.07), which reduces the lattice thermal conductivity. The power factor of PbTe-PbSe-PbS quaternary alloys can be significantly enhanced by using a band convergence in PbTe1−xSex. The band structure modifications, with the result of simultaneous PbS nanoprecipitation, give rise to a high Z T value of 2.3 at 800 K for (PbTe)0.95−x(PbSe)x(PbS)0.05. The chemical potential tuning by effective K-doping ( x = 0.02) and PbS substitution reveals a high power factor and low thermal conductivity, resulting in a comparatively high Z T value of 1.72 at 800 K. The combination of a high Seebeck coefficient and low thermal conductivity results in a very high Z T value of 1.52 at 700 K as n-type materials for low Cl-doped ( x = 0.0005) (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. Therefore, this review presents the simultaneous emergence of effective chemical potential tuning, band convergence, and nanoprecipitation, giving rise to a significant enhancement of the thermoelectric performance of both p - and n -type PbTe-PbSe-PbS quaternary alloy and composite TE materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Sin-Wook You ◽  
Il-Ho Kim ◽  
Soon-Mok Choi ◽  
Won-Seon Seo

Mg2+xSi0.7Sn0.3Sbm(0≤x≤0.2,m=0or 0.01) solid solutions have been successfully prepared by mechanical alloying and hot pressing as a solid-state synthesis route. All specimens were identified as phases with antifluorite structure and showed n-type conduction. The electrical conductivity of Mg-excess solid solutions was enhanced due to increased electron concentrations. The absolute values of the Seebeck coefficient varied substantially with Sb doping and excess Mg, which was attributed to the change in carrier concentration. The onset temperature of bipolar conduction was shifted higher with Sb doping and excess Mg. The lowest thermal conductivity of 1.3 W/mK was obtained for Mg2Si0.7Sn0.3Sb0.01. A maximumZTof 0.64 was achieved at 723 K for Mg2.2Si0.7Sn0.3Sb0.01.


2021 ◽  
Vol 1039 ◽  
pp. 255-259
Author(s):  
Arej Kadhim

This paper displays the fabrication of a thermoelectric (TE) generation module using n-ZnSb and p-Zn0.25Cd0.75Sb bulk TE materials. TE properties of the Zn1-xCdxSb bulks with x= 0, 0.5 and 0.75, in terms of the electrical conductivity () and Seebeck coefficient (S) were measured in the range of 300-500K. The higher power factor (S2σ) values for n-ZnSb and p-Zn0.25Cd0.75Sb bulks were obtained about 2.410-4mW/mK2 at 303K and 1.1810-5 mW/mK2 at 468K, respectively. By variation of the thermal conditions, the maximum output power (Pmax) with two p-n couples generator module was 1.3810-5 mW at hot side temperature of 355K and temperature difference () of 40K. The internal (Rin = 0.17 m) and contact resistances (Rc = 0.67 m) between legs and electrodes were discussed below.


Sign in / Sign up

Export Citation Format

Share Document