Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

2009 ◽  
Vol 1174 ◽  
Author(s):  
Jaekeun Yu ◽  
Jwayeon Kim ◽  
Jeoungsu Han

AbstractBy using tin chloride solution as the raw material, a nano-sized tin oxide powder with average particle size below 50 nm is generated by spray pyrolysis reaction. This study also examines the influences of the reaction parameters such as reaction temperature and the concentration of raw material solution on the powder properties. As the reaction temperature increases from 800 to 850 ℃, the average particle size of the generated powder increases from 20 nm to 30 nm. As the reaction temperature reaches 900 ℃, the droplets are composed of nano-particles with average size of 30 nm, while the average size of individual particles increases remarkably up to 80˜100 nm. When the tin concentration reaches 75 g/L, the average particle size of the powder is below 20 nm. When the tin concentration reaches 150 g/L, the droplets are composed of nano particles with average size around 30 nm, whereas the average size of independent particles increases up to 80˜100 nm. When the concentration reaches 400 g/L, the droplets are composed of nano-particles with average size of 30 nm.

2010 ◽  
Vol 17 (02) ◽  
pp. 223-228
Author(s):  
JAE-SIK YOON

Niobium powder was fabricated by metallothermic reduction process using K2NbF7 as the raw material, KCl and KF as the diluents and Na as the reducing agent. The apparatus for the experiment was designed and built specifically for the present study. Varying properties of niobium powder depending on reaction temperature and excess of reducing agent were analyzed. The niobium particle size increased significantly as the reduction temperature increased from 993 to 1093 K. The particle size was fairly uniform at a given reaction temperature, varying from 0.2 μ m to 50 nm depending on the reaction temperature. The yield of niobium powder increased from 58 to 83% with an increase in reaction temperature. The average particle size of niobium powder was improved from 70 nm to 0.2 μ m with the increase in the amount of Na excess. In addition, the yield rate of Nb powder was 82% in the 5% excess sodium.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.


2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


2010 ◽  
Vol 5 (3) ◽  
pp. 155892501000500 ◽  
Author(s):  
D.P. Chattopadhyay ◽  
B.H. Patel

This research deals with the synthesis of nanosized copper as colloidal solution and its application to cotton fabric. Copper nano colloids were prepared by chemical reduction of copper salt using sodium borohydride as reducing agent in presence of tri-sodium citrate. The size and size distribution of the particles were examined by particle size analyzer and the morphology of the synthesized particles was examined by SEM and AFM techniques. X-ray fluorescence spectroscopy detected the presence of copper in the treated fabric. The results of particle size analysis showed that the average particle size varied from 60 nm to 100 nm. The nano copper treated cotton was subjected to soil burial test for the assessment of its resistance towards microbial attack. SEM images of treated fabric indicate copper nano particles are well dispersed on the surface of the specimens. The treatments of nano copper colloidal solution on cotton not only improve its antimicrobial efficiency but also influenced the tensile strength of the fabric sample positively. The treatment was found to enhance the color depth and fastness properties of direct dyed cotton fabric samples.


2020 ◽  
Vol 4 (5) ◽  
pp. 2220-2228 ◽  
Author(s):  
Xueying Dong ◽  
Yifu Zhang ◽  
Qiang Chen ◽  
Hanmei Jiang ◽  
Qiushi Wang ◽  
...  

Nanotailoring of active manganese silicate with an average particle size of about 20 nm is realized by an ammonia-etching-assisted route, delivering a 3.55-times higher faradaic capacity than the traditional yolk–shell counterpart in hybrid supercapacitors.


2012 ◽  
Vol 463-464 ◽  
pp. 760-763
Author(s):  
Zhen Zhao Pei ◽  
Hong Bin Xu ◽  
Yi Zhang

Nanoparticles of Cr2O3 were successfully obtained via hydrothermal reduction of CH3OH. The oxidant and chromium source was CrO3. The process needs no stirrer or surfactant and the CrO3 concentration was 0.83mol/L. The obtained products were loosely agglomerated Cr2O3 nanoparticles with the average size of 29 to 79 nm. Influences of reactant ratios and calcination temperatures on the specific surface area and average particle size were discussed. And the morphology of nanoparticles was investigated by use of field-emission scanning electron microscope.


1995 ◽  
Vol 10 (7) ◽  
pp. 1644-1652 ◽  
Author(s):  
Abhijit S. Gurav ◽  
Toivo T. Kodas ◽  
Jorma Joutsensaari ◽  
Esko I. Kauppincn ◽  
Riitta Zilliacus

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.


2008 ◽  
Vol 388 ◽  
pp. 245-248 ◽  
Author(s):  
Hiroki Yamada ◽  
Takashi Okawa ◽  
Takashi Ogihara

Ba(Mg1/3Ta2/3)O3 (BMT) powders were successfully prepared by ultrasonic spray pyrolysis from an aqueous solution of Ba, Mg and Ta. The particles characteristics of BMT nano-sized powders were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). As-prepared powder particles had a sub-micrometer size with a narrow distribution. Transmission electron microscopy (TEM) observation revealed that the average size of the BMT nano-particles was around 20 nm, and that these particles were aggregated. The dielectric constant (r) of 23.2 and the Q・f of 98,300 were obtained at 1550°C by a spray pyrolysis.


2013 ◽  
Vol 690-693 ◽  
pp. 454-457
Author(s):  
Hong Bo Li ◽  
Shu Yan Wu ◽  
Jing Wang ◽  
Chun Jie Li

Columnar crystaldendriteequiaxial dendritescolumnar crystalNanosized powder was synthesized by direct-reactive precipitation process using a stoichiometrical mixture of TiCl4, BaCl2 as the reactants while NaOH as precipitant. Under the ratio of Ba to Ti is 1.02, PH=13, three reaction temperature of 70°C, 80°C and 90°C were conducted respectively. Morphology and phase structure of powder were investigated, and the influence of reaction temperature on powder morphology was discussed. The result indicates that synthesized powder is single cubic BaTiO3 and contains no impurities. BaTiO3 powders generally show spherical, and average particle size decreases with increasing reaction temperature. When reaction temperature is 80°C, BaTiO3 powder has best uniformity and dispersivity with the diameter of 80-100nm. The influence of reaction temperature on powder particle size can be attributed to the corporate contribution of nucleation and growth rate. Polyglycol as surface active agent has a significant effect in restraining agglomeration.


Sign in / Sign up

Export Citation Format

Share Document