The Role of the Surface Coverage on the Structural and the Electronic Properties of TiO2 Nanocrystals

2009 ◽  
Vol 1178 ◽  
Author(s):  
Amilcare Iacomino ◽  
Giovanni Cantele ◽  
Fabio Trani ◽  
Domenico Ninno ◽  
Ivan Marri ◽  
...  

AbstractThe titanium dioxide (TiO2) complexes are widely investigated for their striking and multipurpose capabilities. The TiO2 key feature lies in its photocatalytic activity for several reactions of social (bioengineering, environmental and artistic protection, pollution containment) and commercial (photovoltaic, alternative-energy, gas sensing) interests. The possibility to enhance specific reactions at the nanoscale by a fine tuning of the nano-sized single crystals properties boosted in the last decade the scientific research. Thus a theoretical understanding of the fundamental properties of TiO2 nanocrystals became necessary to predict and expedite the experimental effords. We present here a characterization of TiO2 0D nanoclusters and 1D nanowires in the framework of ab initio DFT calculations. Based on both theoretical and experimental evidences we defined a stoichiometric TiO2 NC by modifying a perfect bipyramidal morphology and then used this NC as a chain repetition unit in the NW. We analyzed the effect of the surface coverage by functionalizing dangling bonds with simple adsorbates (dissociated water and hydrogens) modeling two acidic environments. These terminations are important to model the basical interactions of TiO2 nanosystems with the hydration sphere, which is always found to surround the nanosamples and toaffect their photocatalytic activity. We thus address the electronic reorganization and the surface weight in determining the global features of the nanostructures. The structural reconstruction is found to depend on the surface coverage and the experimental evidences on the structural variations can be explained by a topological analysis of the Ti-O bonds. Quantum confinement effects in the electronic properties are observed through the bandgap widening and the discretization of the energy distribution, but the surface competes to determine the energy dispersion of the electronic levels. The hydrogenated nanocrystals do show occupied levels at the bottom of the coduction bands, thus leading to metallic nanowires in one dimension. Whereas in the hydrogenated cluster such levels present a localized charge distribution with respect to the whole structure and they are also similar for the atomic orbital character and energy position to the defect states obtained by oxygens desorption. From the analysis of the electronic density of states we found that Ti-H bonds induce in-gap states above the valence bands, whereas hydration leads to occupied states that shift the valence bands to lower binding energies. Formation energy calculations reveal that surface hydration leads to the most stable nanocrystals, in agreement with the experimental findings that water coverage stabilizes the surface.

2018 ◽  
Vol 20 (3) ◽  
pp. 1974-1983 ◽  
Author(s):  
Xiaotian Hua ◽  
Xinguo Ma ◽  
Jisong Hu ◽  
Hua He ◽  
Guowang Xu ◽  
...  

The manipulation of the constituents of novel hetero-photocatalysts is an effective method for improving photocatalytic efficiency, but a theoretical understanding of the relationship between interlayer interaction and photocatalytic activity is still lacking.


2018 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

We report the synthesis of two isomeric Pt(II) complexes ligated by doubly deprotonated 1,1′-bis(<i>o</i>-carborane) (<b>bc</b>). This work provides a potential route to fine-tune the electronic properties of luminescent metal complexes by virtue of vertex-differentiated coordination chemistry of carborane-based ligands.


2021 ◽  
Vol 11 (15) ◽  
pp. 6862
Author(s):  
Hongzhe Wen ◽  
Xuan Luo

Perovskites have recently attracted interest in the field of solar energy due to their excellent photovoltaic properties. We herein present a new approach to the composition of lead free perovskites via mixing of halide and oxide perovskites that share the cubic ABX3 structure. Using first-principles calculations through Density Functional Theory, we systematically investigated the atomic and electronic structures of mixed perovskite compounds composed of four cubic ABX3 perovskites. Our result shows that the B and X atoms play important roles in their band structure. On the other hand, their valence bands contributed by O-2p, Rh-4p, and Ti-3p orbitals, and their electronic properties were determined by Rh-O and Ti-O bonds. With new understandings of the electronic properties of cubic halide or oxide perovskites, we lastly combined the cubic perovskites in various configurations to improve stability and tune the bandgap to values desirable for photovoltaic cell applications. Our investigations suggest that the mixed perovskite compound Cs2Sn2Cl3I3Sr2TiRhO6 produced a bandgap of 1.2 eV, which falls into the ideal range of 1.0 to 1.7 eV, indicating high photo-conversion efficiency and showing promise towards solar energy applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2112-2118 ◽  
Author(s):  
Luís F. Da Silva ◽  
Osmando F. Lopes ◽  
Ariadne C. Catto ◽  
Waldir Avansi ◽  
Maria I. B. Bernardi ◽  
...  

The ZnO–SnO2 heterojunction catalyst was prepared via a hydrothermal treatment route. The heterojunction exhibited a superior photocatalytic performance in comparison to SnO2 and ZnO, attributed to the good charge separation.


1998 ◽  
Vol 21 (3) ◽  
pp. 217-219 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro

A formulation for the energy-averaged local valence band density of states of amorphous silicon carbide is derived. To this end,sp3-type hybrid orbitals are employed.


2020 ◽  
Vol 10 (22) ◽  
pp. 7745-7756 ◽  
Author(s):  
Chenfei Li ◽  
Robert Dickson ◽  
Nils Rockstroh ◽  
Jabor Rabeah ◽  
David B. Cordes ◽  
...  

Subtle electronic ligand effects have a strong impact on the mechanistic pathway of a photocatalytic coupling reaction.


2018 ◽  
Vol 37 (18) ◽  
pp. 3122-3131 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

2019 ◽  
Vol 34 (01) ◽  
pp. 2050014
Author(s):  
Yingying Li ◽  
Xuxin Yang ◽  
Zihao Wang ◽  
Yonghong Hu ◽  
Caixia Mao ◽  
...  

The geometric structure, energy barrier and electronic properties of H-incorporated [Formula: see text] heterojunctions were investigated by first-principles calculations. Hydrogen atom settles in [Formula: see text] as interstitial impurity due to its small radius. Through calculating and analyzing the total energies of H-incorporated [Formula: see text] heterojunction, a much higher potential barrier (1.75 eV) was found when H atom diffuses from the interface into the [Formula: see text] material than that (0.25 eV) into the Zr metal. The encountered potential barriers of H atom diffusing from vacuum into the [Formula: see text] and Zr metal are also calculated, and they are both positive. These findings indicate that [Formula: see text] is a suitable coating material to prevent the hydrogen embrittlement and corrosion in Zr metal. The electronic properties and valence bond properties of H-incorporated [Formula: see text] were analyzed based on the band structure, electronic density of states and Mulliken distribution. The calculated results show that all the H-incorporated [Formula: see text] heterojunctions exhibit metallic, covalent and ionic properties. These investigations may provide new insight into the underlying mechanisms of hydrogen diffusion in the [Formula: see text] heterojunction.


Sign in / Sign up

Export Citation Format

Share Document