Wet Chemical Etching of Zn-containing oxides and HfO2 for the fabrication of Transparent TFTs

2009 ◽  
Vol 1201 ◽  
Author(s):  
Jae-Kwan Kim ◽  
Jun Young Kim ◽  
Seung-Cheol Han ◽  
Joon Seop Kwak ◽  
Ji-Myon Lee

AbstractThe etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.

1999 ◽  
Vol 429 (1-3) ◽  
pp. 237-245 ◽  
Author(s):  
Andrew D. Polli ◽  
Thomas Wagner ◽  
Manfred Rühle

1998 ◽  
Vol 537 ◽  
Author(s):  
D. A. Stocker ◽  
E. F. Schubert ◽  
K. S. Boutros ◽  
J. M. Redwing

AbstractA method is presented for fabricating fully wet-etched InGaN/GaN laser cavities using photoenhanced electrochemical wet etching followed by crystallographic wet etching. Crystallographic wet chemical etching of n- and p-type GaN grown on c-plane sapphire is achieved using H3PO4 and various hydroxides, with etch rates as high as 3.2 μm/min. The crystallographic GaN etch planes are {0001}, {1010}, {1011}, {1012}, and {1013}. The vertical {1010} planes appear perfectly smooth when viewed with a field-effect scanning electron microscope (FESEM), indicating a surface roughness less than 5 nm, suitable for laser facets. The etch rate and crystallographic nature for the various etching solutions are independent of conductivity, as shown by seamless etching of a p-GaN/undoped, high-resistivity GaN homojunction.


2000 ◽  
Vol 87 (12) ◽  
pp. 8732-8740 ◽  
Author(s):  
E. van Veenendaal ◽  
J. van Suchtelen ◽  
W. J. P. van Enckevort ◽  
K. Sato ◽  
A. J. Nijdam ◽  
...  

1996 ◽  
Vol 449 ◽  
Author(s):  
C. B. Vartuli ◽  
J. W. Lee ◽  
J. D. MacKenzie ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

ABSTRACTWet chemical etching of A1N and InxAl1-xN was investigated in KOH-based solutions as a function of etch temperature, and material quality. The etch rates for both materials increased with increasing etch temperatures, which was varied from 20 °C to 80 °C. The crystal quality of A1N prepared by reactive sputtering was improved by rapid thermal annealing at temperatures to 1100 °C with a decreased wet etch rate of the material measured with increasing anneal temperature. The etch rate decreased approximately an order of magnitude at 80 °C etch temperature after a 1100 °C anneal. The etch rate for In0.19Al0.81N grown by Metal Organic Molecular Beam Epitaxy was approximately three times higher for material on Si than on GaAs. This corresponds to the superior crystalline quality of the material grown on GaAs. Etching of InxAl1-xN was also examined as a function of In composition. The etch rate initially increased as the In composition changed from 0 to 36%, and then decreased to 0 Å/min for InN. The activation energy for these etches is very low, 2.0 ± 0.5 kcal•mol-1 for the sputtered A1N. The activation energies for InAIN were dependent on In composition and were in the range 2–6 kcal mol-1. GaN and InN layers did not show any etching in KOH at temperatures up to 80 °C.


1999 ◽  
Vol 4 (S1) ◽  
pp. 799-804 ◽  
Author(s):  
D. A. Stocker ◽  
E. F. Schubert ◽  
K. S. Boutros ◽  
J. M. Redwing

A method is presented for fabricating fully wet-etched InGaN/GaN laser cavities using hotoenhanced electrochemical wet etching followed by crystallographic wet etching. Crystallographic wet chemical etching of n- and p-type GaN grown on c-plane sapphire is achieved using H3PO4 and various hydroxides, with etch rates as high as 3.2.μm/min. The crystallographic GaN etch planes are {0001}, {100}, {10}, {10}, and {103}. The vertical {100} planes appear perfectly smooth when viewed with a field-effect scanning electron microscope (FESEM), indicating a surface roughness less than 5 nm, suitable for laser facets. The etch rate and crystallographic nature for the various etching solutions are independent of conductivity, as shown by seamless etching of a p-GaN/undoped, high-resistivity GaN homojunction.


Author(s):  
Dongmei Meng ◽  
Joe Rupley ◽  
Chris McMahon

Abstract This paper presents decapsulation solutions for devices bonded with Cu wire. By removing mold compound to a thin layer using a laser ablation tool, Cu wire bonded packages are decapsulated using wet chemical etching by controlling the etch time and temperature. Further, the paper investigates the possibilities of decapsulating Cu wire bonded devices using full wet chemical etches without the facilitation of laser ablation removing much of mold compound. Additional discussion on reliability concerns when evaluating Cu wirebond devices is addressed here. The lack of understanding of the reliability of Cu wire bonded packages creates a challenge to the FA engineer as they must develop techniques to help understanding the reliability issue associated with Cu wire bonding devices. More research and analysis are ongoing to develop appropriate analysis methods and techniques to support the Cu wire bonding device technology in the lab.


Small ◽  
2020 ◽  
Vol 16 (51) ◽  
pp. 2007045
Author(s):  
Mei Sun ◽  
Bocheng Yu ◽  
Mengyu Hong ◽  
Zhiwei Li ◽  
Fengjiao Lyu ◽  
...  

Author(s):  
Albert Grau-Carbonell ◽  
Sina Sadighikia ◽  
Tom A. J. Welling ◽  
Relinde J. A. van Dijk-Moes ◽  
Ramakrishna Kotni ◽  
...  

2015 ◽  
Vol 48 (36) ◽  
pp. 365303 ◽  
Author(s):  
Jingchang Sun ◽  
Ting Zhao ◽  
Zhangwei Ma ◽  
Ming Li ◽  
Cheng Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document