Conformable Patch Antenna Array for Energy Harvesting

2009 ◽  
Vol 1205 ◽  
Author(s):  
Akshat C Patel ◽  
Miral P Vaghela ◽  
Hassan Bajwa ◽  
Prabir K Patra

AbstractCarbon nanotube (CNT) has emerged as potential candidate for replacement of conventional metal patch in antenna application. The principal objective of our research is to develop nanostructured flexible patch antenna array for multi- frequency operation in industrial, scientific and medical (ISM) band. Patch antenna design using CNT on flexible cotton sheets has been simulated with cotton as a substrate and CNT as conductive patch and ground plane. Due to high conformability and conductivity of CNT all antenna parameters like VSWR, return loss, gain and radiation pattern obtained using FEKO EMSS software meet design criteria. Our simulated antenna design shows a return loss less than -10 dB and VSWR less than 2 at 2.06 GHz, 2.38 GHz and 2.49 GHz. We have also simulated a versatile and conformable antenna design where the whole geometry is rolled up like patch array on cylindrical surface. Conformability to curved surfaces and integration with the structure brings about a unique antenna design. An inset fed square patch array is also proposed for RF energy harvesting operating in the 2.45 GHz ISM band that can harvest and store energy from the surrounding environment. Simulation result shows that dc voltage of 0.215 V can be achieved at -6 dbm received energy level at 2.45 GHz IEEE 802.11b band. This would correspond to potential working distance of 10m.

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 54
Author(s):  
Sanae Azizi ◽  
Laurent Canale ◽  
Saida Ahyoud ◽  
Georges Zissis ◽  
Adel Asselman

This paper presents the design of a compact size band patch antenna for 5G wireless communications. This wideband antenna was designed on a glass substrate (12 × 11 × 2 mm3) and is optically transparent and compact. It consists of a radiation patch and a ground plane using AgHT-8 material. The antenna design comprises rectangular shaped branches optimized to attain the wideband characteristics. The calculated impedance bandwidth is 7.7% covering the frequency range of 25 to 27 GHz. A prototype of the antenna and various parameters such as return loss plot, gain plot, radiation pattern plot, and voltage standing wave ratio (VSWR) are presented and discussed. The simulated results of this antenna show that it is well suited for future 5G applications because of its transparency, flexibility, light weight, and wide achievable frequency bandwidth near the millimeter wave frequency band.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 64
Author(s):  
Shailendra Kumar Dhakad ◽  
Umesh Dwivedi ◽  
Sanyog Rawat ◽  
Yash Agarwal ◽  
Anay Joshi

This paper proposes a unique micro-strip patch antenna which has a hexagonal fractal pattern which can mainly be used for ground based surveillance radar applications. To further optimize the functioning of the antenna, multiple slots have been added to the ground plane, and a stepped pattern has been implemented to increase the current density and the gain. A detailed study of the stages of development of the antenna has been made, illustrating the effect that various design elements have on the operating characteristics of the final design. There is specific emphasis on the use of slots in the ground plane. Variations in return loss, gain, VSWR, operating frequency and bandwidth with changes in the design of the ground plane have been documented. The antenna is designed to perform in the X-band, more specifically around 9 GHz, making it well suited for short range search. The final iteration of the antenna design, including various stages of slotting in the ground plane, works at 8.7 GHz, which is well within the X-band range, and has a return loss of around 30 dB.  


2019 ◽  
Vol 12 (1) ◽  
pp. 37-41
Author(s):  
A. Pramod Kumar

Abstract The objective of E-shaped patch antenna with hexagonal slot is to operate in the ISM band for different kind of applications, such as WLAN, GPS, and various modern wireless systems. The posit antenna is designed using FR4 substrate having a dielectric constant of 4.4 with a thickness of 1.6 mm. Probe feed technique is used for this antenna design. A parametric study was included to determine the effect of design approaches and the antenna performance. The realization of the designed antenna was analyzed in term of boost (gain), return loss, and radiation pattern. The design was upsurged to confirm the best achievable result. This antenna resonates at three different frequencies at 1.6 GHz, 3.24 GHz, and 5.6 GHz with a reflection coefficient less than -10 dB and VSWR<2.


2019 ◽  
Vol 8 (4) ◽  
pp. 8673-8676

A Wearable textile antenna is meant to be a part of clothing used for communication purposes like tracking, navigation, mobile computing and public safety’s .The invention of wearable textile antenna exhibited the need for wireless communication tools into garments. A Spork shaped patch textile antenna is designed and simulated for the operation at Industrial, Scientific and Medical (ISM) band applications. The textile patch antenna is simulated using Computer Simulation technique software (CST), the textile material and patch provides the antenna to work in the frequency range of 2.4-5.8 GHz.These bands include designated frequency band of wireless standards IEEE 802.11 and IEEE 802.11b, Bluetooth, The designed antenna exhibits good radiation pattern, return loss, and gain for ISM band.


A compact rectangular MS antenna for Ultra Wide Band applications is designed. In the proposed design the rectangular patch antenna designed with cutting a slot in ground of length and width 2.5mm and 3.0mm respectively at the back of feed line. By using the defective ground plane a wide BWof 9.782 GHz with frequency band 3.099 GHz to 12.278 GHz is achieved. The designed antenna with a compressed size of 30 mm x 30 mm is fabricated and tested. The antenna’s return loss and VSWR plots are presented here to confirm the complete UWB bands. Special configuration of patch antenna with slotted partial ground was designed and optimized using CST Microwave Studio.


2017 ◽  
Vol 49 (004) ◽  
pp. 767--772
Author(s):  
G. AHMAD ◽  
M. I. BABAR ◽  
M. IRFAN ◽  
M. ASHRAF ◽  
T. JAN

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document