scholarly journals Design of Multiband E-Shaped Patch Antenna with Hexagonal Slot for WLAN Applications

2019 ◽  
Vol 12 (1) ◽  
pp. 37-41
Author(s):  
A. Pramod Kumar

Abstract The objective of E-shaped patch antenna with hexagonal slot is to operate in the ISM band for different kind of applications, such as WLAN, GPS, and various modern wireless systems. The posit antenna is designed using FR4 substrate having a dielectric constant of 4.4 with a thickness of 1.6 mm. Probe feed technique is used for this antenna design. A parametric study was included to determine the effect of design approaches and the antenna performance. The realization of the designed antenna was analyzed in term of boost (gain), return loss, and radiation pattern. The design was upsurged to confirm the best achievable result. This antenna resonates at three different frequencies at 1.6 GHz, 3.24 GHz, and 5.6 GHz with a reflection coefficient less than -10 dB and VSWR<2.

2018 ◽  
Vol 10 (2) ◽  
pp. 15-21
Author(s):  
Aprinal Adila Asril ◽  
Lifwarda Lifwarda ◽  
Yul Antonisfia

Microstrip antennas are very concerned shapes and sizes. Can be viewed in terms of simple materials, shapes, sizes and dimensions smaller antennae, the price of production is cheaper and able to provide a reasonably good performance, in addition to having many advantages, the microstrip antenna also has its drawbacks one of which is a narrow bandwidth. In this research will be designed a microstrip antenna bowtie which works at a frequency of 5.2 GHz which has a size of 68mm x 33mm groundplane. For the length and width of 33mm x 13mm patch. This antenna is designed on a printed cicuit board (PCB) FR4 epoxy with a dielectric constant of 4.7 and has a thickness of 1,6mm. This bowtie microstrip antenna design using IE3D software. This antenna has been simulated using IE3D software showed its resonance frequency is 5.270 GHz with a return loss -23 595 dB bandwidth of 230 MHz, VSWR 1,142, unidirectional radiation pattern and impedance 43,919Ω. The results of which have been successfully fabricated antenna with a resonant frequency of 5.21 GHz with a return loss -16.813 dB bandwidth of 79 MHz, VSWR 1.368, unidirectional radiation pattern, impedance 43,546Ω and HPBW 105 °.


2009 ◽  
Vol 1205 ◽  
Author(s):  
Akshat C Patel ◽  
Miral P Vaghela ◽  
Hassan Bajwa ◽  
Prabir K Patra

AbstractCarbon nanotube (CNT) has emerged as potential candidate for replacement of conventional metal patch in antenna application. The principal objective of our research is to develop nanostructured flexible patch antenna array for multi- frequency operation in industrial, scientific and medical (ISM) band. Patch antenna design using CNT on flexible cotton sheets has been simulated with cotton as a substrate and CNT as conductive patch and ground plane. Due to high conformability and conductivity of CNT all antenna parameters like VSWR, return loss, gain and radiation pattern obtained using FEKO EMSS software meet design criteria. Our simulated antenna design shows a return loss less than -10 dB and VSWR less than 2 at 2.06 GHz, 2.38 GHz and 2.49 GHz. We have also simulated a versatile and conformable antenna design where the whole geometry is rolled up like patch array on cylindrical surface. Conformability to curved surfaces and integration with the structure brings about a unique antenna design. An inset fed square patch array is also proposed for RF energy harvesting operating in the 2.45 GHz ISM band that can harvest and store energy from the surrounding environment. Simulation result shows that dc voltage of 0.215 V can be achieved at -6 dbm received energy level at 2.45 GHz IEEE 802.11b band. This would correspond to potential working distance of 10m.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1354 ◽  
Author(s):  
Amran Hossain ◽  
Mohammad Tariqul Islam ◽  
Ali F. Almutairi ◽  
Mandeep Singh Jit Singh ◽  
Kamarulzaman Mat ◽  
...  

An Ultrawideband (UWB) octagonal ring-shaped parasitic resonator-based patch antenna for microwave imaging applications is presented in this study, which is constructed with a diamond-shaped radiating patch, three octagonal, rectangular slotted ring-shaped parasitic resonator elements, and partial slotting ground plane. The main goals of uses of parasitic ring-shaped elements are improving antenna performance. In the prototype, various kinds of slots on the ground plane were investigated, and especially rectangular slots and irregular zigzag slots are applied to enhance bandwidth, gain, efficiency, and radiation directivity. The optimized size of the antenna is 29 × 24 × 1.5 mm3 by using the FR-4 substrate. The overall results illustrate that the antenna has a bandwidth of 8.7 GHz (2.80–11.50 GHz) for the reflection coefficient S11 < −10 dB with directional radiation pattern. The maximum gain of the proposed prototype is more than 5.7 dBi, and the average efficiency over the radiating bandwidth is 75%. Different design modifications are performed to attain the most favorable outcome of the proposed antenna. However, the prototype of the proposed antenna is designed and simulated in the 3D simulator CST Microwave Studio 2018 and then effectively fabricated and measured. The investigation throughout the study of the numerical as well as experimental data explicit that the proposed antenna is appropriate for the Ultrawideband-based microwave-imaging fields.


2021 ◽  
Vol 2 (3) ◽  
pp. 123-127
Author(s):  
Vivekanadam B

Inefficient utilization of licensed spectrum bands and overcrowding of unlicensed bands are caused due to the spectrum shortage and growing demand for wireless communication. The wireless spectrum is burdened due to the host centric traditional approaches for data detection and recovery in the IP-based networks that. The service or data is retrieved from the service provider through a new routing path every time the mobile service requester initiates a request. The vacant licensed channels are utilized appropriately enabling opportunistic and efficient band usage of the spectrum using Cognitive Radio (CR) technology. Wireless communication with low cost, compact antenna element, high gain, wideband and low profile can be performed using patch antenna. Patch is a significant aspect of antenna design. The antenna design parameters are understood by varying the patch. A good return loss can be achieved by enhancing the radiation pattern on changing the patch dimensions. High Frequency Structure Simulator (HFSS) is used for simulation and analysis of the circular patch antenna. The return loss, radiation efficiency, Voltage Standing Wave Ratio (VSWR) and radiation pattern of the antenna are analyzed.


2021 ◽  
Vol 36 (2) ◽  
pp. 152-158
Author(s):  
Cong Bui ◽  
Thanh Dang ◽  
Minh Doan ◽  
Truong Nguyen

This paper proposes a reconfigurable microstrip patch antenna design for wireless ISM band applications. The antenna simultaneously uses PIN Diodes to switch between linear and circular polarization at 2.45 GHz and uses Varactor Diode to continuously tune the operating frequency from 1.73 GHz to 2.45 GHz. The antenna performance is characterized as a combination of ON/OFF state of PIN Diode and a bias voltage of Varactor Diode varying from 0.8V to 10V. A good agreement between simulation and measurement is obtained which validates the proposed method. The proposed frequency/polarization reconfigurable antenna is promising for various applications in wireless ISM band such as DCS (1710 – 1880 MHz), PCS (1850 – 1990 MHz), GSM 1800, GSM 1900, UMTS (1920 – 2170 MHz) and WiFi/Bluetooth (2.4 – 2.5 GHz).


2020 ◽  
Vol 6 (5) ◽  
pp. 1-5
Author(s):  
Rovin Tiwari ◽  
Raghavendra Sharma ◽  
Rahul Dubey

A research on Antenna design and simulation is a emerging area among researchers. Antenna is a basic element for wireless communication. There are various shaps and types of antenna, which uses in different allpication. Now a days Microstrip patch anteena is very useful in advance electronics devices applications. This paper focused on study based various types of microstrip antenna. Return loss, VSWR, bandwidth, resonant frequency and gain is key parameters to judge antenna performance. Good value of return loss is less than -10dB. Considerable range of VSWR is 1-2. CST microwave studio is a advance software to design and simulation of all types of antenna, filter etc.


2021 ◽  
Author(s):  
Tejaswita Kumari ◽  
Prabir Ghosh ◽  
Atanu Chowdhury

The objective of this paper is to design an Octa- Band L-slot Square Patch antenna which will operate in 3.18 GHz, 4.71 GHz, 7.04 GHz, 8.38 GHz, 8.86 GHz, 10.66 GHz, 11.76 GHz, 14.12 GHz frequencies. The same antenna would also work in UWB frequencies. An L-slots Square copper patch with a thickness 0.035mm is placed on FR4 epoxy substrate having dielectric constant 4.4 with a height of 1.6 mm with single port. This has been designed using HFSS commercial software simulator so that Return Loss, VSWR, Radiation pattern and Surface current distribution can be measured.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Wildan Wildan ◽  
Dwi Astuti Cahyasiwi ◽  
Syah Alam ◽  
Mohd Azman Zakariya ◽  
Harry Ramza

This research proposed microstrip circular patch antenna simulation at a working frequency 3500 MHz. The antenna has been designed using a Duroid RT5880 substrate with dielectric constant (εr) = 2.2, substrate thickness (h) = 1.575 mm, and tangent loss = 0.0009 with microstrip line feeding. The simulation result, return loss value obtained -26.385, VSWR value 1.09, gain value 7.64 dBi, total radiation efficiency value -0.6489 dB, and bandwidth value 72 MHz (3468.8 MHz – 3541.9 MHz).


2021 ◽  
Vol 10 (4) ◽  
pp. 2055-2061
Author(s):  
Rasha Mahdi Salih ◽  
Ali Khalid Jassim

This work builds a metamaterial (MTM) superstrate loaded on a patch of microstrip antenna for wireless communications. The MTM superstrate is made up of four G-shaped resonators on FR-4 substrate with a relative permittivity of 4.4 and has a total area of (8×16) mm2, and is higher than the patch. The MTM superstrate increases antenna gain while also raising the input reflection coefficient. When it is 9 mm above the patch, the gain increased from 3.28 dB to 6.02 dB, and when it is 7 mm above the patch, the input reflection coefficient was enhanced from -31.217 dB to -45.8 dB. When the MTM superstrate loaded antenna was compared to the traditional unloaded antenna, it was discovered that metamaterials have a lot of potential for improving antenna performance.


2021 ◽  
Vol 3 (3) ◽  
pp. 170-181
Author(s):  
C. Anand

Slot and patch modification for the design of a compact multiband antenna with Multi-Input-Multi-Output (MIMO) functionality is proposed in this paper. At various frequency bands, the antenna performance is obtained by modification and addition of slot and patch shapes in the design of the compact MIMO multiband antenna. Addition of slots or patches is done separately in the already existing multiband antenna designs. Whereas in this work, the addition of slot and patch are combined. Arlon Diclad 880 with a dielectric constant of 2.17 - 2.2 (εr) and height 0.75mm is used for the antenna design. The MIMO multiband antenna with the dimension of 12.5 mm × 7.5 mm is designed. On various millimeter-wave frequency bands ranging from 20 GHz to 40 GHz, the MIMO antenna can function as observed in the results of simulation and evaluation. This work shows that microstrip antennas can be added with slots and patches during their design and development, thereby enabling the antenna to operate under multiple frequency bands.


Sign in / Sign up

Export Citation Format

Share Document