Optically Controlled Optical Modulator using a Self-Assembled 2D Plasmonic Crystal

2010 ◽  
Vol 1248 ◽  
Author(s):  
Yi Lou ◽  
John F. Muth

AbstractThe surface plasmon enhanced transmission of light though a plasmonic crystal provides a novel approach for fabricating an optical modulator. The extraordinary transmission passing though these patterned metallic films is very sensitive to the surface dielectric environment. In this study, hexagonal lattice plasmonic crystals were fabricated with a self-assembly technique. Arrays of gold nano-holes or bumps with 500/600 nm periodicity were used to test the sensitivity of plasmon resonance wavelength for liquids and polymers with different dielectric constants. A nonlinear optical polymer P3HT coated onto the plasmonic crystal and pumped with 475 nm laser was found to modulate the transmission of a normally incident red light at 670 nm.

Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24369-24376 ◽  
Author(s):  
Jiemin Zhao ◽  
Xiaoping Wang ◽  
Yanshen Kuang ◽  
Yufeng Zhang ◽  
Xiaowen Shi ◽  
...  

Alginate (ALG)–lysozyme (LZ) beads were fabricated by a cross-linking process. Negatively charged ALG and positively charged LZ were alternately deposited on the positively charged ALG–LZ beads via a layer-by-layer (LBL) self-assembly technique.


2012 ◽  
Author(s):  
M. Pisco ◽  
G. Quero ◽  
A. Iadicicco ◽  
M. Giordano ◽  
F. Galeotti ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2867
Author(s):  
Myoung Jun Park ◽  
Grace M. Nisola ◽  
Dong Han Seo ◽  
Chen Wang ◽  
Sherub Phuntsho ◽  
...  

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1253 ◽  
Author(s):  
Huihui Zeng ◽  
Baolin Xing ◽  
Lunjian Chen ◽  
Guiyun Yi ◽  
Guangxu Huang ◽  
...  

A novel approach is developed to synthesize a nitrogen-doped porous Co3O4/anthracite-derived graphene (Co3O4/AG) nanocomposite through a combined self-assembly and heat treatment process using resource-rich anthracite as a carbonaceous precursor. The nanocomposite contains uniformly distributed Co3O4 nanoparticles with a size smaller than 8 nm on the surface of porous graphene, and exhibits a specific surface area (120 m2·g−1), well-developed mesopores distributed at 3~10 nm, and a high level of nitrogen doping (5.4 at. %). These unique microstructure features of the nanocomposite can offer extra active sites and efficient pathways during the electrochemical reaction, which are conducive to improvement of the electrochemical performance for the anode material. The Co3O4/AG electrode possesses a high reversible capacity of 845 mAh·g−1 and an excellent rate capacity of 587 mAh·g−1. Furthermore, a good cyclic stability of 510 mAh·g−1 after 100 cycles at 500 mA·g−1 is maintained. Therefore, this work could provide an economical and effective route for the large-scale application of a Co3O4/AG nanocomposite as an excellent anode material in lithium-ion batteries.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130070 ◽  
Author(s):  
Haiyong Ao ◽  
Youtao Xie ◽  
Honglue Tan ◽  
Shengbing Yang ◽  
Kai Li ◽  
...  

Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.


2004 ◽  
Author(s):  
M. Saif Islam ◽  
Shashank Sharma ◽  
Theodore I. Kamins ◽  
R. Stanley Williams

Sign in / Sign up

Export Citation Format

Share Document