Thermal Conductivity of Nickel Oxide Nanoparticles Synthesized by Combustion Method

2010 ◽  
Vol 1256 ◽  
Author(s):  
Pranati Sahoo ◽  
Dinesh Misra ◽  
Girija Shankar Chaubey ◽  
James Salvador ◽  
Nathan J. Takas ◽  
...  

AbstractMonodispersed nickel oxide nanoparticles have been synthesized using solution combustion synthesis method. Size of the nanoparticles was controlled by varying different reaction parameters such as reaction temperature and reaction time. Structure and morphology of the nanoparticles were investigated using X-ray diffraction and transmission electron microscopy. BET surface area of 99.7 m2/g was obtained for the nanoparticles synthesized at 300 °C. A decrease in surface area was observed with increase in reaction temperature. The nanoparticles were compacted using spark plasma sintering technique at 950 °C and thermal conductivity was studied on compacted sample. Significant decrease in thermal conductivity was observed for nanoparticles in compared to their bulk counter-part.

2019 ◽  
Vol 17 (12) ◽  
pp. 977-981
Author(s):  
K. Subashini ◽  
S. Prakash ◽  
V. Sujatha

The catalytic, optical and thermal properties are based on the size of the nanoparticles. Nickel oxide nanoparticles have unique optical property and excellent antibacterial activity. The present study aims for the synthesis of Nickel oxide nanoparticles (NiO NPs) using Sterculia foetida (S. foetida) leaf extract as reducing agent by solution combustion method. The synthesized Nickel oxide nanoparticles (NiO NPs) were confirmed by UV-Visible spectroscopy (UV) with the peak at 370 nm and at the temperature of 450 ± 10 °C, Fourier transform infrared (FTIR) wavelength was observed at 1418 cm–1 1027 cm–1 shows C–O stretching vibration and at 507 cm–1 vibration of Ni–O bond found. Crystalline structure and the formation of monoclinic phase revealed by Powder X-ray diffraction (PXRD) pattern, the percentage of nickel and oxygen of NiO NPs were confirmed with EDAX analysis. The Scanning electron microscopy (SEM) and Transmission electron microscope (TEM) images indicate the shape of Nickel oxide nanoparticles (NiO NPs) with the size range of 10–51 nm. Staphylococcus aureus (S. aureus) (Gram positive) and Escherichia coli (E. coli) (Gram negative) bacteria's were taken to study about antibacterial activity against the green synthesized Nickel oxide nanoparticles (NiO NPs). The Nickel oxide nanoparticles have pharmaceutical and other biomedical applications.


2010 ◽  
Vol 24 (31) ◽  
pp. 6107-6113 ◽  
Author(s):  
R. H. LIMSAY ◽  
R. A. TAYADE ◽  
C. B. TALWATKAR ◽  
S. P. YAWALE ◽  
S. S. YAWALE ◽  
...  

With the advent of nanotechnology, methods of synthesis have attained immense importance since it governs particle size of the materials. In this paper, we report synthesis of CaZrO 3 by simple and energy efficient method that produced ultra fine powder having particle size in the nanometers. Synthesis of CaZrO 3 was carried out using corresponding metal nitrates and mixed fuels i.e., glycine and urea at a temperature less than 500°C. The reaction was highly exothermic in nature. The product obtained was voluminous and foamy. The as synthesized CaZrO 3 is crystalline in nature. It required no further heating. The compound was indexed using standard indexing procedure and the lattice constants matches completely with those reported in the literature. Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA) results shows that the material is highly stable internally during the whole range of temperature studied i.e., up to 1000°C. The powder density of the material was calculated to be 5.6393 g cm -1. BET surface area was found to be 11.505 m 2/ g . The particle size was calculated using density and BET surface area values. The particle size of the as synthesized CaZrO 3 was found to be 92 nm. The product was further characterized using Scanning Electron Microscope and electrical conductivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23658-23665 ◽  
Author(s):  
Batool Fatima ◽  
Fahmida Jabeen ◽  
Zahra Padashbarmchi ◽  
Muhammad Najam-ul-Haq

Using graphene as a template after modification with nickel oxide, a nanocomposite with an increased surface area is fabricated and applied to phosphopeptides.


2012 ◽  
Vol 557-559 ◽  
pp. 438-441
Author(s):  
Xu Sheng Du ◽  
Hong Yuan Liu ◽  
Yiu Wing Mai ◽  
Ying Gang Miao

Mono-dispersed Nickel oxide nanoparticles were directly formed on the carbon fibers through a facile in situ flame synthesis method. High magnification SEM and TEM study revealed that the nickel oxide nanoparticles have a polyhedral structure and are uniformly distributed on the surface of carbon fibers. The concentration effect of the precursor used on the growth of polyhedral nickel oxide nanoparticles on carbon fibers has been studied.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1523
Author(s):  
Vidhya Selvanathan ◽  
M. Shahinuzzaman ◽  
Shankary Selvanathan ◽  
Dilip Kumar Sarkar ◽  
Norah Algethami ◽  
...  

Electrocatalytic water splitting is a promising solution to resolve the global energy crisis. Tuning the morphology and particle size is a crucial aspect in designing a highly efficient nanomaterials-based electrocatalyst for water splitting. Herein, green synthesis of nickel oxide nanoparticles using phytochemicals from three different sources was employed to synthesize nickel oxide nanoparticles (NiOx NPs). Nickel (II) acetate tetrahydrate was reacted in presence of aloe vera leaves extract, papaya peel extract and dragon fruit peel extract, respectively, and the physicochemical properties of the biosynthesized NPs were compared to sodium hydroxide (NaOH)-mediated NiOx. Based on the average particle size calculation from Scherrer’s equation, using X-ray diffractograms and field-emission scanning electron microscope analysis revealed that all three biosynthesized NiOx NPs have smaller particle size than that synthesized using the base. Aloe-vera-mediated NiOx NPs exhibited the best electrocatalytic performance with an overpotential of 413 mV at 10 mA cm−2 and a Tafel slope of 95 mV dec−1. Electrochemical surface area (ECSA) measurement and electrochemical impedance spectroscopic analysis verified that the high surface area, efficient charge-transfer kinetics and higher conductivity of aloe-vera-mediated NiOx NPs contribute to its low overpotential values.


Author(s):  
B.A. Katsnelson ◽  
M.P. Sutunkova ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

The article presents in an experiment obtained principal results based on repeated low-level inhalation exposures of laboratory animals (white rats, outbred) to nickel oxide nanoparticles with a diameter of (23 ± 5) nm, 4 hours a day, 5 times a week for up to 10 months in a «nose only» installation. It was shown that non-specific body reactions to the action of NiO NPs include: diverse manifestations of systemic toxicity with a particularly pronounced influence on liver and kidney function, redox balance, damage to some areas of brain tissue, associated with proven movement of the nanoparticles themselves from the nasal mucosa along the olfactory tract; some cytological signs of probable development for allergic syndrome; paradoxically low severity of pulmonary pathology by pneumoconiotic type explained by a small chronic delay of nanoparticles in the lungs; the genotoxic effect of the organismal level, even at those low levels of chronic exposure, at which systemic toxicity is rather poorly. Along with that, NiO NPs also induce phase-stimulation of erythropoiesis, which is relatively specific for the toxic nickel effects.


2021 ◽  
Vol 14 (3) ◽  
pp. 443-453
Author(s):  
Mohammad Amin Jadidi Kouhbanani ◽  
Yasin Sadeghipour ◽  
Mina Sarani ◽  
Erfan Sefidgar ◽  
Saba Ilkhani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document