Composition- and Temperature-Dependence of Ion Mixing in Amorphous Si/Ge Artificial Multilayers

1988 ◽  
Vol 128 ◽  
Author(s):  
B. Park ◽  
F. Spaepen ◽  
J. M. Poate ◽  
F. Priolo ◽  
D. C. Jacobson

ABSTRACTAmorphous Si/Ge artificial multilayers with a repeat length of around 60A have been partially mixed with 1.5 MeV Ar+ ions at temperatures in the range 77–673K. The change in the intensity of the first X-ray diffraction peak resulting from the composition modulation is used to determine the mixing lengths. The diffusive component of the square of the mixing length, at a given dose, is independent of the dose rate and has an Arrhenius-type temperature dependence, with activation enthalpies between 0.19 and 0.22 eV, depending on the average composition.

1986 ◽  
Vol 74 ◽  
Author(s):  
B. Park ◽  
F. Spaepen ◽  
J. M. Poate ◽  
D. C. Jacobson

AbstractArtificial amorphous Si/Ge multilayers of equiatomic average composition with a repeat length around 60 Å have been prepared by ion beam sputtering. Implantation with 29Si led to a decrease in the intensity of the X-ray diffraction peaks arising from the composition modulation, which could be used for an accurate measurement of the implantation-induced mixing distance. Subsequent annealing showed no difference between the interdiffusivity in an implanted and unimplanted sample.


Carbon Trends ◽  
2021 ◽  
pp. 100071
Author(s):  
Keith R. Hallam ◽  
James Edward Darnbrough ◽  
Charilaos Paraskevoulakos ◽  
Peter J. Heard ◽  
T. James Marrow ◽  
...  

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


2004 ◽  
Vol 372 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
J. Gubicza ◽  
M. Kassem ◽  
G. Ribárik ◽  
T. Ungár

2019 ◽  
Vol 43 (5) ◽  
pp. 1903-1911 ◽  
Author(s):  
Ahmed A. Al-Tabbakh ◽  
Nilgun Karatepe ◽  
Aseel B. Al-Zubaidi ◽  
Aida Benchaabane ◽  
Natheer B. Mahmood

2010 ◽  
Vol 663-665 ◽  
pp. 166-169
Author(s):  
Qing Quan Xiao ◽  
Quan Xie ◽  
Ke Jie Zhao ◽  
Zhi Qiang Yu

Semiconducting Mg2Si films were fabricated on Si (111) substrates by magnetron sputtering and subsequent annealing, and the effects of sputtering pressure on the Mg2Si film growth were studied. The structural and morphological properties of Mg2Si films were investigated by the means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the Mg2Si (220) main diffraction peak intensity increased and then decreased with the increasing of sputtering pressure. The (220) diffraction peak got its maximum at 3.0 Pa sputtering pressure. The intensity of Mg2Si (200) and (400) diffraction peaks increased rapidly as the sputtering pressure decreased when the pressure was lower than 1.5 Pa. The films prepared at higher sputtering pressure had very irregular microstructures, and the surface of semiconducting Mg2Si films became smoother with the decreasing of the sputtering pressure.


Sign in / Sign up

Export Citation Format

Share Document