Corrosion of Hardened Cement Paste by NH4NO3 and Acetic and Formic Acids

1988 ◽  
Vol 137 ◽  
Author(s):  
Adolf Bajza

AbstractEffects of NH4NO3, CH3COOH and HCOOH solutions on the pore structure and other properties of hardened cement pastes made out of portland, slag, and fly ash cements at different water-to-cement ratios are discussed.Total porosity and the volume of pores detectable by mercury intrusion porosimetry (MIP) increased with increasing water-to-cement ratio, concentration of aggressive solution, and time of immersion. The weight, bulk density, and compressive strenath of the samples decreased at the same time. Use of blended cements did not result in improvement of the long-term durability of the samples. The degradation of the cement pastes increased from NH4NO3 to CH3COOH to HCOOH.

2006 ◽  
Vol 94 (9-11) ◽  
Author(s):  
Jan Tits ◽  
Kazuki Iijima ◽  
Erich Wieland ◽  
Gento Kamei

In the present study the interaction of Ra(II) with calcium silicate hydrates (C-S-H) as well as with fresh and degraded hardened cement pastes (HCP) has been investigated using batch-type sorption tests. Synthetic C-S-H phases with varying CaO:SiOThe cation exchange model developed for C-S-H phases in the absence of alkalis was successfully applied to predict the sorption of Ra(II) on degraded HCP, assuming that the Ra(II) sorbs solely on the C-S-H fraction of the HCP. Model predictions and experimental data were found to agree well in view of the simplified sorption model used.


2008 ◽  
Vol 14 (4) ◽  
pp. 269-275 ◽  
Author(s):  
Z’hor Guemmadi ◽  
Musa Resheidat ◽  
Hacéne Houari ◽  
Belkacem Toumi

The effect of substitution of Portland cement by limestone up to 40% as well as its fineness on the physico‐mechanical properties of fresh and hardened cement pastes is studied. The binder was prepared by substitution of cement by limestone filler. Fillers were chosen of various particle sizes and with percentages from 5 to 40. Test results revealed that the replacement of Portland cement by the finest filler of limestone slightly decreases the consistency and the setting times (initial and final). The total porosity decreases and accordingly the compressive strength is improved with the content and fines of limestone. Although limestone has a little accelerating effect on the hydration process of Portland cement, but acts only as a filler reducing the porosity due to its compact structure, in which the compressive strength of the hardened cement paste is enhanced. The XRD and DTA analyses of samples cured up to 28 days showed that this amelioration is due to formation of new hydrated compounds. It is concluded that an addition of finely ground limestone filler only up to 15% gives a better strength. Santrauka Tirtos šviežios ir sukietėjusios cementinės tešlos, kurioje iki 40 % cemento pakeista įvairaus smulkumo maltu kalkakmeniu, savybės. Rišiklis buvo paruoštas dalį cemento pakeitus maltu kalkakmenio užpildu. Užpildo dalelės buvo įvairaus dydžio, o jų kiekis buvo keičiamas nuo 5 % iki 40 %. Tyrimai parodė, kad priedas leidžia sumažinti vandens kiekį, reikalingą tos pačios konsistencijos mišiniui gauti, taip pat cemento rišimosi pradžiai ir pabaigai paankstinti. Sumažėja cementinio akmens suminis poringumas ir atitinkamai padidėja stipris gniuždant cementinio akmens, kuriame yra kalkakmenio priedų. Nors kalkakmenio priedas nedaug pagreitina portlandcemenčio hidratacijos procesą, tačiau veikia kaip užpildas, sutankinantis struktūrą, dėl to labai padidėja sukietėjusio cementinio akmens stipris gniuždant. Bandinių, išlaikytų 28 dienas, rentgenostruktūrinė ir diferencinė terminė analizė parodė, kad pagerėjimas yra dėl susidariusių naujadarų. Apibendrinant galima teigti, kad 15 % malto kalkakmenio priedas turi didžiausią įtaką stiprumo rezultatams.


2021 ◽  
Vol 321 ◽  
pp. 9-14
Author(s):  
Gintautas Skripkiūnas ◽  
Ekaterina Karpova ◽  
Rostislav Drochytka ◽  
Jakub Hodul

Hydration of cement systems modified by nano additives requires the understanding of its mechanisms. The present research is focused on the investigation of hydration processes in cement pastes modified by multi-walled carbon nanotubes (MWCNTs) suspension. The ultrasonication method was used for homogenization of MWCNTs in the volume of an aqueous suspension. The hydration of cement pastes was assessed by the calorimetry test. The prolongation of cement hydration in case of modification by MWCNT suspension was observed. The microstructure observation by scanning electron microscopy (SEM) was performed for identification of MWCNT's dispergation in hardened cement pastes and for the observation of cement hydration products. The compressive and flexural strength were tested to evaluate the effect of MWCNT on mechanical properties of hardened cement paste.


2014 ◽  
Vol 60 ◽  
pp. 48-56 ◽  
Author(s):  
Vili Lilkov ◽  
Ivan Rostovsky ◽  
Ognyan Petrov ◽  
Yana Tzvetanova ◽  
Plamen Savov

2011 ◽  
Vol 474-476 ◽  
pp. 1238-1242 ◽  
Author(s):  
Tao Sun ◽  
Zhong He Shui ◽  
Tao Huo

This paper presents the rehydration performance of binary binders made with dehydrated cement paste (DCP) and phosphogypsum (GP). DCP was obtained by thermal treatment of hardened cement pastes in which the initial water to cement ratio was 0.5. DCP we mixed with phosphogypsum (PG) to prepare the binary binders . The effect of PG on the physical and mechanical properties of the binary binders was investigated. Scanning electron microscope (SEM) was used to indentify the structural characteristics of the rehydration products. The results showed that the setting time was prolonged and the compressive strength increased slightly by mixing DCP with PG. Microstructural observations indicated that an remarkable amount of ettringite intergrows with the hydrated calcium silicate to form a network structure. Thus, the addition of phosphogypsum can not only utilize the industrial by-product, but enhances the hydraulic properties of the DCP.


2012 ◽  
Vol 517 ◽  
pp. 403-410
Author(s):  
Jia Xiao ◽  
Bao Guo Ma ◽  
Rong Zhen Dong ◽  
Cai Yun Xu

The effect of ground limestone fineness on the properties and mechanism of cement-based composite materials was investigated. The setting times, fluidity and strength of cement mortar were measured. In order to identify the mechanism effect of ground limestone fineness on the microstructure of the hardened cement pastes, microstructure analyses such as calorimetry analysis and Mercury Intrusion Porosimetry (MIP) were also performed. Experimental results indicated that the setting times are shortened, and the fluidity and strength of cement mortar are improved with the ground limestone fineness increases. The increase of the ground limestone fineness can effectively inhibit the pore structure of hardened paste, which due to mortar and paste samples incorporating replacement levels of ground limestone, and improve the pore structure of hardened paste.


2005 ◽  
Vol 23 (3) ◽  
pp. 245-254 ◽  
Author(s):  
S.A. Abo-El-Enein ◽  
S. Hanafi ◽  
F.I. El-Hosiny ◽  
El-Said H.M. El-Mosallamy ◽  
M.S. Amin

Ordinary Portland cement (OPC) pastes with added superplasticizer were made using water/cement weight ratios of standard consistency. Three types of superplasticizer based on acrylate—poly(ethylene glycol) copolymers were used. The pastes were hydrated for various time lengths and the mechanical characteristics of the hardened cement pastes were studied and related to their pore structures. It was found that the addition of the superplasticizers to OPC improved the mechanical properties of the hardened pastes for all hydration lengths. The addition of such superplasticizers to OPC resulted in a decrease in the specific surface areas and total pore volumes of the hardened superplasticized cement pastes relative to the corresponding hardened neat cement pastes.


2010 ◽  
Vol 177 ◽  
pp. 506-509 ◽  
Author(s):  
Man Jian Wu ◽  
Wu Yao ◽  
Wei Wang ◽  
Yong Qi Wei

A new method involving the extraction of various ions from hardened cement pastes by anhydrous ethanol is presented to determine the pH value and ionic concentration during the first 28 days. The volume content of pore solution extracted by ethanol in the leachate reached 12% or above and the pH values calculated by alkali ions are more than 12, even up to 12.73. The results were compared with those from parallel, conventional pore water expression experiments. All of these comparisons verified the feasibility of the proposed method. However, the application of this method to pore solution analysis needs further improvement.


Sign in / Sign up

Export Citation Format

Share Document