Ohmic Contact Formation Mechanism in the Ge/Pd/N-GaAs System

1989 ◽  
Vol 148 ◽  
Author(s):  
E.D. Marshall ◽  
S.S. Lau ◽  
C.J. Palmstrøm ◽  
T. Sands ◽  
C.L. Schwartz ◽  
...  

ABSTRACTAnnealed Ge/Pd/n-GaAs samples utilizing substrates with superlattice marker layers have been analyzed using high resolution backside secondary ion mass spectrometry and cross-sectional transmission electron microscopy. Interfacial compositional and microstructural changes have been correlated with changes in contact resistivity. The onset of good ohmic behavior is correlated with the decomposition of an intermediate epitaxial Pd4(GaAs,Ge2) phase and solid-phase regrowth of Ge-incorporated GaAs followed by growth of a thin Ge epitaxial layer.

1998 ◽  
Vol 537 ◽  
Author(s):  
E. Kaminska ◽  
A. Piotrowska ◽  
J. Jasinski ◽  
J. Kozubowski ◽  
A. Barcz ◽  
...  

AbstractStructural transformations in Ni/Si-based contacts to GaN occurring under heat treatment have been studied using transmission electron microscopy and secondary ion mass spectrometry. Transition from non-ohmic to ohmic behavior correlates with reaction between Ni and Si, and decomposition of the initially formed interfacial Ni:Ga:N layer. Transport of dopant atoms from metallization into GaN testifies in favour of the SPR process of ohmic contact formation


1999 ◽  
Vol 4 (S1) ◽  
pp. 864-869
Author(s):  
E. Kaminska ◽  
A. Piotrowska ◽  
J. Jasinski ◽  
J. Kozubowski ◽  
A. Barcz ◽  
...  

Structural transformations in Ni/Si-based contacts to GaN occurring under heat treatment have been studied using transmission electron microscopy and secondary ion mass spectrometry. Transition from non-ohmic to ohmic behavior correlates with reaction between Ni and Si, and decomposition of the initially formed interfacial Ni:Ga:N layer. Transport of dopant atoms from metallization into GaN testifies in favour of the SPR process of ohmic contact formation


2010 ◽  
Vol 434-435 ◽  
pp. 169-172 ◽  
Author(s):  
Wei Kong Pang ◽  
It Meng Low ◽  
J.V. Hanna

The use of secondary-ion mass spectrometry (SIMS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) to detect the existence of amorphous silica in Ti3SiC2 oxidised at 500–1000°C is described. The formation of an amorphous SiO2 layer and its growth in thickness with temperature was monitored using dynamic SIMS. Results of NMR and TEM verify for the first time the direct evidence of amorphous silica formation during the oxidation of Ti3SiC2 at 1000°C.


1985 ◽  
Vol 63 (6) ◽  
pp. 863-869 ◽  
Author(s):  
W. Vandervorst ◽  
D. C. Houghton ◽  
F. R. Shepherd ◽  
M. L. Swanson ◽  
H. H. Plattner ◽  
...  

The residual damage left after furnace-annealing Si wafers implanted with 30-keV B+ or 120-keV [Formula: see text] ions has been investigated for doses of 3–5 × 1015 ions∙cm−2. Transmission electron microscopy, Rutherford backscattering, and channeling were used to study the morphology and distribution of the damage while the B and F content and their depth distributions were determined by nuclear reaction analysis and secondary-ion mass spectrometry. For B+-implanted samples the residual damage is concentrated in a band at a depth corresponding to the B projected range. For [Formula: see text]-implanted samples the residual damage is located mainly in the region of the as-implanted amorphous–crystalline interface.


Sign in / Sign up

Export Citation Format

Share Document