scholarly journals Microtomy of Large Particle Zeolites for Tem

1990 ◽  
Vol 199 ◽  
Author(s):  
J. G. Ulan ◽  
C. Schooley ◽  
R. Gronsky

ABSTRACTUniformly thin specimens of powders, suitable for electron microscopy, can be prepared by ultramicrotomy. There is a size limit to the particles that can be studied since larger particles tend to be dislodged from the available resins when microtomed. A method is described to strengthen the binding of the organic resin to the inorganic zeolite, allowing large particles to be sectioned. The particle size limit increased from 3 μm to greater than 20 gim in diameter for FeZSM-5 aggregates. This method can be applied to a variety of oxide powder samples, extending the utility of microtomy as a materials science tool.

1982 ◽  
Vol 93 (1) ◽  
pp. 63-75 ◽  
Author(s):  
P N Unwin ◽  
R A Milligan

The three-dimensional structure of the nuclear pore complex has been determined to a resolution of approximately 90 A by electron microscopy using nuclear envelopes from Xenopus oocytes. It is shown to be an assembly of several discrete constituents arranged with octagonal symmetry about a central axis. There are apparent twofold axes perpendicular to the octad axis which suggest that the framework of the pore complex is constructed from two equal but oppositely facing halves. The half facing the cytoplasm is in some instances decorated by large particles, similar in appearance and size to ribosomes.


2015 ◽  
Vol 8 (1) ◽  
pp. 198-202 ◽  
Author(s):  
Hua-rui Hao ◽  
Cheng-hu Xue ◽  
Gang Chen ◽  
Jing-rui Zhao ◽  
Li Hong

Methylglucoside (MEG) has been used in the water-based mud with fine montmorillonite (MMT) swelling inhibition, but it still has such shortages as large concentration and low thermostability. In this work, carboxymethyl glucoside (CMG) was synthesized with glucose and sodium chloroacetate and used as swelling inhibitor. The inhibition of CMG against clay swelling was investigated by MMT linear expansion test, mud ball immersing test and bentonite inhibition test. The results showed that the CMG has a good inhibition to the hydration swelling and dispersion of MMT. Under lower concentrations, the linear expansion rate of MMT in CMG solution is much lower than that of MEG, and the hydration expansion degree of the mud ball in the CMG solution was significantly inhibited. The characterizations of physicalchemical properties of particle, analysized by thermogravimetric analysis and scanning electron microscopy revealed that CMG plays a great role in preventing water from absorbing and keeps MMT in large particle size.


2010 ◽  
Vol 652 ◽  
pp. 105-137 ◽  
Author(s):  
J. M. N. T. GRAY ◽  
B. P. KOKELAAR

Particle size segregation can have a significant feedback on the motion of many hazardous geophysical mass flows such as debris flows, dense pyroclastic flows and snow avalanches. This paper develops a new depth-averaged theory for segregation that can easily be incorporated into the existing depth-averaged structure of typical models of geophysical mass flows. The theory is derived by depth-averaging the segregation-remixing equation for a bi-disperse mixture of large and small particles and assuming that (i) the avalanche is always inversely graded and (ii) there is a linear downslope velocity profile through the avalanche depth. Remarkably, the resulting ‘large particle transport equation’ is very closely related to the segregation equation from which it is derived. Large particles are preferentially transported towards the avalanche front and then accumulate there. This is important, because when this is combined with mobility feedback effects, the larger less mobile particles at the front can be continuously shouldered aside to spontaneously form lateral levees that channelize the flow and enhance run-out. The theory provides a general framework that will enable segregation-mobility feedback effects to be studied in detail for the first time. While the large particle transport equation has a very simple representation of the particle size distribution, it does a surprisingly good job of capturing solutions to the full theory once the grains have segregated into inversely graded layers. In particular, we show that provided the inversely graded interface does not break it has precisely the same solution as the full theory. When the interface does break, a concentration shock forms instead of a breaking size segregation wave, but the net transport of large particles towards the flow front is exactly the same. The theory can also model more complex effects in small-scale stratification experiments, where particles may either be brought to rest by basal deposition or by the upslope propagation of a granular bore. In the former case the resulting deposit is normally graded, while in the latter case it is inversely graded. These completely opposite gradings in the deposit arise from a parent flow that is inversely graded, which raises many questions about how to interpret geological deposits.


2020 ◽  
Author(s):  
Larry W. Esposito ◽  
Miodrag Sremcevic ◽  
Joshua E Colwell ◽  
Stephanie Eckert

<p>We give calculations for the excess variance, excess skewness and excess kurtosis with formulas that combine the effects of cylindrical shadows, along with gaps, ghosts and clumps (all calculated for the granola bar model for rectangular clumps and gaps). Wherever the rings have significant gaps or clumps, those will dominate the statistics over the individual ring particles contribution. We have refined an overlap correction for multiple shadows, which is important for larger optical depth. This correction results from summing a geometric series, and is similar to the empirical formula, eq. (22) in Colwell et al (2018). The comparison to Monte Carlo calculations is improved for large particle size by including the edge effects when large particles cross the edges of the viewing area A in Cassini UVIS occultations. As a check, we can explain the upward curvature of the dependence of normalized excess variance for Saturn’s background C ring by the observation of Jerousek etal (2018) that the increased optical depth is directly correlated with effective particle size. Assuming a linear dependence R<sub>eff</sub> = 12 * (tau – 0.08) + 1.8m, we match both the curvature of excess variance E and the skewness Gamma in the region between 78,000 and 84,600km from Saturn. This explanation requires no gaps or ghosts (Baillie etal 2013) in this region of Saturn’s C ring.</p>


Author(s):  
Hannes Lichte ◽  
Edgar Voelkl

The object wave o(x,y) = a(x,y)exp(iφ(x,y)) at the exit face of the specimen is described by two real functions, i.e. amplitude a(x,y) and phase φ(x,y). In stead of o(x,y), however, in conventional transmission electron microscopy one records only the real intensity I(x,y) of the image wave b(x,y) loosing the image phase. In addition, referred to the object wave, b(x,y) is heavily distorted by the aberrations of the microscope giving rise to loss of resolution. Dealing with strong objects, a unique interpretation of the micrograph in terms of amplitude and phase of the object is not possible. According to Gabor, holography helps in that it records the image wave completely by both amplitude and phase. Subsequently, by means of a numerical reconstruction procedure, b(x,y) is deconvoluted from aberrations to retrieve o(x,y). Likewise, the Fourier spectrum of the object wave is at hand. Without the restrictions sketched above, the investigation of the object can be performed by different reconstruction procedures on one hologram. The holograms were taken by means of a Philips EM420-FEG with an electron biprism at 100 kV.


Author(s):  
J.C.H. Spence ◽  
J. Mayer

The Zeiss 912 is a new fully digital, side-entry, 120 Kv TEM/STEM instrument for materials science, fitted with an omega magnetic imaging energy filter. Pumping is by turbopump and ion pump. The magnetic imaging filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient parallel (area) detection. The energy loss intensity distribution may also be displayed on the screen, and recorded by scanning it over the PMT supplied. If a CCD camera is fitted and suitable new software developed, “parallel ELS” recording results. For large fields of view, filtered images can be recorded much more efficiently than by Scanning Reflection Electron Microscopy, and the large background of inelastic scattering removed. We have therefore evaluated the 912 for REM and RHEED applications. Causes of streaking and resonance in RHEED patterns are being studied, and a more quantitative analysis of CBRED patterns may be possible. Dark field band-gap REM imaging of surface states may also be possible.


Author(s):  
Robert M. Glaeser ◽  
Bing K. Jap

The dynamical scattering effect, which can be described as the failure of the first Born approximation, is perhaps the most important factor that has prevented the widespread use of electron diffraction intensities for crystallographic structure determination. It would seem to be quite certain that dynamical effects will also interfere with structure analysis based upon electron microscope image data, whenever the dynamical effect seriously perturbs the diffracted wave. While it is normally taken for granted that the dynamical effect must be taken into consideration in materials science applications of electron microscopy, very little attention has been given to this problem in the biological sciences.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
Y. P. Lin ◽  
A. H. O’Reilly ◽  
J. E. Greedan ◽  
M. Post

In the basal planes of the orthorhombic YBa2Cu3O7-X compound with x=0.07, which has a Tc of around 90K, chains of copper-oxygen are formed along the [010] direction. Previous investigations on the variation of Tc with oxygen content have shown the existence of a plateau at Tc = 60K for x=0.3 to 0.4, suggesting the presence of a separate phase. This phase has also been identified to be orthorhombic, but with a 2x superlattice along [100] of the parent structure, and the superlattice has been attributed to the formation of alternating copper-oxygen and copper-vacancy chains. In our work, we have studied the chain ordering phenomenon by electron microscopy and neutron diffraction on samples with different oxygen contents. We report here some of our electron microscopy findings for samples with x=0.4.Powder samples of YBa2Cu3O7-X were prepared by controlled re-oxidation of previously reduced material. For electron microscopy, the sample was dry ground using a mortar and pestle in a dry nitrogen atmosphere without the use of any solvent and transferred dry onto holey carbon film for examination in a Philips CM12 microscope.


Sign in / Sign up

Export Citation Format

Share Document