A Novel Conceptual Model for the Flow and Transport in Fractured Rock

1990 ◽  
Vol 212 ◽  
Author(s):  
V. Taivassalo ◽  
A. Hautojärvi

ABSTRACTIn crystalline rock groundwater flows predominantly in fractures and fissures. Strongly varying fracture aperture guides the flow preferentially in some parts of a fracture plane, in so called channels. In our hydraulic model the degree of channeling together with the aperture variation along a channel is included as a factor which is the ratio of the aperture from transmissivity measurements and the aperture from the tracer tests.The developed transport model takes into account the coupling of molecular diffusion and advection in a velocity field varying linearly over a characteristic width. Various flow velocities in different parts of a channel cause a transient phase with non-Fickian behavior of dispersion. This might erroneously be attributed to other processes e.g. matrix diffusion when not taken into account in the migration modeling of tracers. Molecular diffusion across the flow field, however, tends to smooth out the transport time differences. With time the dispersion diminishes and becomes more symmetric in confined channels.The concept and models have been applied to predict and interpret field experiments aimed to investigate transport over long distances in highly conductive fracture zones. The analyzed experiments have been performed at the Finnsjön research area in Sweden and they belong to the test case 5 of the INTRAVAL project.

Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 440 ◽  
Author(s):  
Jérôme de La Bernardie ◽  
Olivier Bour ◽  
Nicolas Guihéneuf ◽  
Eliot Chatton ◽  
Laurent Longuevergne ◽  
...  

Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.


Geophysics ◽  
1986 ◽  
Vol 51 (8) ◽  
pp. 1585-1593 ◽  
Author(s):  
R. M. Stesky

A theoretical analysis shows that electrical conductivity along fractures in a saturated porous rock is a function of many factors: fluid and rock conductivities, initial fracture aperture and contact area, fracture surface geometry (asperity height distribution and tip curvature), elastic moduli of the rock, and confining pressure or normal stress acting across the fracture. The conductivity in the fracture plane decreases approximately in proportion to log pressure, but the conductivity is influenced by the increased contact area, and hence flow‐path tortuosity, along the fracture surface at elevated pressures. Electrical conductivity in fractures is more affected by flow‐path tortuosity than is permeability. The dependence on pressure was tested using laboratory measurements of conductivity through split cores containing ground, saw‐cut surfaces in a variety of rocks under confining pressures to 200 MPa. The conductivity decreased approximately in proportion to log pressure (there was little effect of increased contact area, and hence tortuosity), which suggests that the contact area may not exceed a few percent of the total apparent area. Measurements of gas permeability through the same split cores showed that when the asperity deformation remained largely elastic, permeability and conductivity had a power of 3 relationship. When asperity collapse occurred, as in a dolomitic marble, the powerlaw relation no longer held; permeability decreased more rapidly under pressure than did conductivity. The different influences of porosity and flow aperture may account for the different behaviors of the two transport properties. The theory suggests a number of ways in which fracture parameters may be extracted from field data. Some of the methods rely on the scale dependence and pressure dependence of the fractured‐rock conductivity; other methods require correlating between different physical properties, such as seismic velocity, which are influenced by the presence of fractures.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. J25-J30 ◽  
Author(s):  
Georgios P. Tsoflias ◽  
Matthew W. Becker

Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency with fracture aperture and fluid electrical conductivity are not well understood. We used analytical modeling, numerical simulations, and field experiments of multifrequency GPR to investigate these relationships for a millimeter-scale-aperture fracture saturated with water of varying salinity. We found that the response of lower-frequency radar signals detects changes in fluid salinity better than the response of higher-frequency signals. Increasing fluid electrical conductivity decreases low-frequency GPR signal wavelength, which improves its thin-layer resolution capability. We concluded that lower signal frequencies, such as [Formula: see text], and saline tracers of up to [Formula: see text] conductivity are preferable when using GPR to monitor flow in fractured rock. Furthermore, we found that GPR amplitude and phase responses are detectable in the field and predictable by EM theory and modeling; therefore, they can be related to fracture aperture and fluid salinity for hydrologic investigations of fractured-rock flow and transport properties.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 81-87 ◽  
Author(s):  
D. R. Champ ◽  
J. Schroeter

The potential for transport of bacteria by groundwater in fractured crystalline rock was assessed in a series of field-scale tracer tests. The breakthrough curves for injected Escherichla coll and “non-reactive” particle tracers were compared with those for conservative inorganic and radioactive tracers. Rapid transport, relative to the conservative tracers, of both bacteria and non-reactive particles was observed. The first appearance of both was with, or slightly before, the conservative tracers for water movement. Removal of the bacteria and particles by filtration processes occurred and was quantified through the calculation of filter factors. The filtration process in this fracture system is similar to that found in a gravel aquifer. From the results we can conclude that particulate contaminants can be very rapidly transported in fracture systems and that continuing sources of contamination could lead to relatively high local concentrations of particulate contaminants compared with the average at any given distance from the source. It was also concluded that the use of traditional conservative tracers, for water movement, to assess the potential for movement of particulate contaminants could lead to significant underestimates of exposure to particulate contaminants due to consumption of water from water recovery wells located in fractured media.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Xi Zhang ◽  
Lifeng Yang ◽  
Dingwei Weng ◽  
Zhen Wang ◽  
Robert G. Jeffrey

Summary In this paper, we incorporated a kinematic proppant transport model for spherical suspensions in hydraulic fractures developed by Dontsov and Peirce (2014) in a pseudo-3D hydraulic-fracture simulator for multilayered rocks to capture a different proppant transport speed than fluid flow and abridged fracture channel by highly concentrated suspensions. For pressure-driven proppant transport, the bridges made of compact proppant particles can lead to both proppant distribution discontinuity and increased fracture aperture and height because of the higher pressure. The model is applied to growth of a fracture from a vertical well, which can contain thin-bedded intervals and more than one opened hydraulic-fracture interval, because the fracture plane extends in height through layers with contrasts in stress and material properties. Three numerical examples demonstrate that a loss of vertical connectivity can occur among multiple fracture sections, and proppant particles are transported along the more compliant layers. The proppant migration within a narrow fracture in a thin soft rock layer can result in bridging and formation of a proppant plug that strongly limits fluid speed. This generates an increase of injection pressure associated with fracture screenout, and these screenout events can emerge at different places along the fracture. Next, because of the lack of pretreatment geomechanical data, the values of layer stress and leakoff coefficient are adjusted for a field case so that the varying bottomhole pressure and fracture length are in line with the field measurements. This paper provides a useful illustration for hydraulic-fracturing treatments with proppant transport affected by and interacting with reservoir lithological complexities.


2021 ◽  
Vol 11 (19) ◽  
pp. 9148
Author(s):  
Luat Khoa Tran ◽  
Stephan Konrad Matthai

We study infiltration of rainwater into fractured rock and the accompanying capillary exchange processes between fractures and matrix, hereafter referred to as fracture–matrix transfer (FMT). Its influence on the velocity of the wetting front for uniform and variable aperture fractures is of prime interest because it determines the penetration depth of infiltration pulses. FMT is modelled explicitly in a discrete fracture and matrix (DFM) framework realised using a hybrid finite element–finite volume discretisation with internal boundaries. The latter separate the fracture mesh from the rock matrix mesh with the benefit that the flow that occurs within the minute fracture subvolume can be tracked with great accuracy. A local interface solver deals with the transient nonlinear aspects of FMT, including spontaneous imbibition of the rock matrix. Two- and three-dimensional heuristic test cases are used to illustrate how FMT affects infiltration. For the investigated scenario, we find that—beyond a critical fracture aperture around 5–10-mm—infiltration rate is no longer affected by FMT. Fracture aperture variations promote in-fracture-plane fingering, with counter-current flow of water (downward) and air (upward). Fracture flow interacts with FMT in a complex fashion. For systems with a small fracture porosity (≤0.01%), our results suggest that intense, hour-long rainfall events can give rise to tens-of-meter-deep infiltration, depending on fracture/matrix properties and initial saturation of the fractured rock mass.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 292
Author(s):  
Kai Zhang ◽  
Meijian Bai ◽  
Yinong Li ◽  
Shaohui Zhang ◽  
Di Xu

The broadcast fertilization method is widely used under basin irrigation in China. A reasonable broadcast fertilization method can effectively improve application performance of fertilization and reduce pollution from non-point agricultural sources. In this study, firstly, a non-uniform broadcast fertilization method and a non-uniform application coefficient were proposed. The value of non-uniform application coefficient is defined in this paper. It represents the ratio of the difference between the maximum and the average fertilization amount of fertilizer applied on the basin surface to the average fertilization amount of fertilizer applied on the basin surface. Secondly, field experiments were conducted to study the movement characteristics of fertilizer under non-uniform broadcast fertilization for basin irrigation. Field experiment results showed that under the condition of basin irrigation, the non-uniform broadcast fertilization method could weaken the non-uniform distribution of fertilizer due to erosion and transport capacity of solid fertilizer by irrigation water flow, which could significantly improve the uniformity of soil solute content. Thirdly, the solute transport model for broadcast fertilization was corroborated by the field experiment results. The variation rule of fertilization performance with non-uniform application coefficient under different basin length and inflow rate was achieved by simulation. The simulation results showed that fertilization uniformity and fertilization storage efficiency increased first and then decreased with the increase of non-uniform application coefficient. In order to be practically applicable, suitable irrigation programs of non-uniform application coefficient under different basin length and inflow rate conditions were proposed by numerical simulation.


1995 ◽  
Vol 412 ◽  
Author(s):  
A. V. Wolfsberg ◽  
B. A. Robinson ◽  
J. T. Fabryka-Martin

AbstractCharacterization and performance assessment (PA) studies for the potential high-level nuclear waste repository at Yucca Mountain require an understanding of migration mechanisms and pathways of radioactive solutes. Measurements of 36C1 in samples extracted from boreholes at the site are being used in conjunction with recent infiltration estimates to calibrate a site-scale flow and solute transport model. This exercise using the flow and solute transport model, FEHM, involves testing different model formulations and two different hypotheses to explain the occurrence of elevated 36Cl in the Calico Hills unit (CHn) which indicates younger water than in the overlying Topopah Spring unit (TSw). One hypothesis suggests fast vertical transport from the surface via fractures in the TSw to the CHn. An alternative hypothesis is that the elevated 36C1 concentrations reflect rapid horizontal flow in the CHn or at the interface between the CHn and the TSw with the source being vertical percolation under spatially isolated regions of high infiltration or at outcrops of those units. Arguments in favor of and against the hypotheses are described in conjunction with the site-scale transport studies.


2013 ◽  
Vol 13 (9) ◽  
pp. 4707-4721 ◽  
Author(s):  
H. Bian ◽  
P. R. Colarco ◽  
M. Chin ◽  
G. Chen ◽  
J. M. Rodriguez ◽  
...  

Abstract. We use the NASA GEOS-5 transport model with tagged tracers to investigate the contributions of different regional sources of CO and black carbon (BC) to their concentrations in the Western Arctic (i.e., 50–90° N and 190–320° E) in spring and summer 2008. The model is evaluated by comparing the results with airborne measurements of CO and BC from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaigns to demonstrate the strengths and limitations of our simulations. We also examine the reliability of tagged CO tracers in characterizing air mass origins using the measured fossil fuel tracer of dichloromethane and the biomass burning tracer of acetonitrile. Our tagged CO simulations suggest that most of the enhanced CO concentrations (above background level from CH4 production) observed during April originate from Asian anthropogenic emissions. Boreal biomass burning emissions and Asian anthropogenic emissions are of similar importance in July domain wise, although the biomass burning CO fraction is much larger in the area of the ARCTAS field experiments. The fraction of CO from Asian anthropogenic emissions is larger in spring than in summer. European sources make up no more than 10% of CO levels in the campaign domain during either period. Comparisons of CO concentrations along the flight tracks with regional averages from GEOS-5 show that the along-track measurements are representative of the concentrations within the large domain of the Western Arctic in April but not in July.


Sign in / Sign up

Export Citation Format

Share Document