Electrical conductivity of brine‐saturated fractured rock

Geophysics ◽  
1986 ◽  
Vol 51 (8) ◽  
pp. 1585-1593 ◽  
Author(s):  
R. M. Stesky

A theoretical analysis shows that electrical conductivity along fractures in a saturated porous rock is a function of many factors: fluid and rock conductivities, initial fracture aperture and contact area, fracture surface geometry (asperity height distribution and tip curvature), elastic moduli of the rock, and confining pressure or normal stress acting across the fracture. The conductivity in the fracture plane decreases approximately in proportion to log pressure, but the conductivity is influenced by the increased contact area, and hence flow‐path tortuosity, along the fracture surface at elevated pressures. Electrical conductivity in fractures is more affected by flow‐path tortuosity than is permeability. The dependence on pressure was tested using laboratory measurements of conductivity through split cores containing ground, saw‐cut surfaces in a variety of rocks under confining pressures to 200 MPa. The conductivity decreased approximately in proportion to log pressure (there was little effect of increased contact area, and hence tortuosity), which suggests that the contact area may not exceed a few percent of the total apparent area. Measurements of gas permeability through the same split cores showed that when the asperity deformation remained largely elastic, permeability and conductivity had a power of 3 relationship. When asperity collapse occurred, as in a dolomitic marble, the powerlaw relation no longer held; permeability decreased more rapidly under pressure than did conductivity. The different influences of porosity and flow aperture may account for the different behaviors of the two transport properties. The theory suggests a number of ways in which fracture parameters may be extracted from field data. Some of the methods rely on the scale dependence and pressure dependence of the fractured‐rock conductivity; other methods require correlating between different physical properties, such as seismic velocity, which are influenced by the presence of fractures.

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. J25-J30 ◽  
Author(s):  
Georgios P. Tsoflias ◽  
Matthew W. Becker

Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency with fracture aperture and fluid electrical conductivity are not well understood. We used analytical modeling, numerical simulations, and field experiments of multifrequency GPR to investigate these relationships for a millimeter-scale-aperture fracture saturated with water of varying salinity. We found that the response of lower-frequency radar signals detects changes in fluid salinity better than the response of higher-frequency signals. Increasing fluid electrical conductivity decreases low-frequency GPR signal wavelength, which improves its thin-layer resolution capability. We concluded that lower signal frequencies, such as [Formula: see text], and saline tracers of up to [Formula: see text] conductivity are preferable when using GPR to monitor flow in fractured rock. Furthermore, we found that GPR amplitude and phase responses are detectable in the field and predictable by EM theory and modeling; therefore, they can be related to fracture aperture and fluid salinity for hydrologic investigations of fractured-rock flow and transport properties.


1990 ◽  
Vol 212 ◽  
Author(s):  
V. Taivassalo ◽  
A. Hautojärvi

ABSTRACTIn crystalline rock groundwater flows predominantly in fractures and fissures. Strongly varying fracture aperture guides the flow preferentially in some parts of a fracture plane, in so called channels. In our hydraulic model the degree of channeling together with the aperture variation along a channel is included as a factor which is the ratio of the aperture from transmissivity measurements and the aperture from the tracer tests.The developed transport model takes into account the coupling of molecular diffusion and advection in a velocity field varying linearly over a characteristic width. Various flow velocities in different parts of a channel cause a transient phase with non-Fickian behavior of dispersion. This might erroneously be attributed to other processes e.g. matrix diffusion when not taken into account in the migration modeling of tracers. Molecular diffusion across the flow field, however, tends to smooth out the transport time differences. With time the dispersion diminishes and becomes more symmetric in confined channels.The concept and models have been applied to predict and interpret field experiments aimed to investigate transport over long distances in highly conductive fracture zones. The analyzed experiments have been performed at the Finnsjön research area in Sweden and they belong to the test case 5 of the INTRAVAL project.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2949
Author(s):  
Peter-Lasse Giertzuch ◽  
Alexis Shakas ◽  
Joseph Doetsch ◽  
Bernard Brixel ◽  
Mohammadreza Jalali ◽  
...  

Solute tracer tests are an established method for the characterization of flow and transport processes in fractured rock. Such tests are often monitored with borehole sensors which offer high temporal sampling and signal to noise ratio, but only limited spatial deployment possibilities. Ground penetrating radar (GPR) is sensitive to electromagnetic properties, and can thus be used to monitor the transport behavior of electrically conductive tracers. Since GPR waves can sample large volumes that are practically inaccessible by traditional borehole sensors, they are expected to increase the spatial resolution of tracer experiments. In this manuscript, we describe two approaches to infer quantitative hydrological data from time-lapse borehole reflection GPR experiments with saline tracers in fractured rock. An important prerequisite of our method includes the generation of GPR data difference images. We show how the calculation of difference radar breakthrough curves (DRBTC) allows to retrieve relative electrical conductivity breakthrough curves for theoretically arbitrary locations in the subsurface. For sufficiently small fracture apertures we found the relation between the DRBTC values and the electrical conductivity in the fracture to be quasi-linear. Additionally, we describe a flow path reconstruction procedure that allows computing approximate flow path distances using reflection GPR data from at least two boreholes. From the temporal information during the time-lapse GPR surveys, we are finally able to calculate flow-path averaged tracer velocities. Our new methods were applied to a field data set that was acquired at the Grimsel Test Site in Switzerland. DRBTCs were successfully calculated for previously inaccessible locations in the experimental rock volume and the flow path averaged velocity field was found to be in good accordance with previous studies at the Grimsel Test Site.


2021 ◽  
Vol 11 (19) ◽  
pp. 9148
Author(s):  
Luat Khoa Tran ◽  
Stephan Konrad Matthai

We study infiltration of rainwater into fractured rock and the accompanying capillary exchange processes between fractures and matrix, hereafter referred to as fracture–matrix transfer (FMT). Its influence on the velocity of the wetting front for uniform and variable aperture fractures is of prime interest because it determines the penetration depth of infiltration pulses. FMT is modelled explicitly in a discrete fracture and matrix (DFM) framework realised using a hybrid finite element–finite volume discretisation with internal boundaries. The latter separate the fracture mesh from the rock matrix mesh with the benefit that the flow that occurs within the minute fracture subvolume can be tracked with great accuracy. A local interface solver deals with the transient nonlinear aspects of FMT, including spontaneous imbibition of the rock matrix. Two- and three-dimensional heuristic test cases are used to illustrate how FMT affects infiltration. For the investigated scenario, we find that—beyond a critical fracture aperture around 5–10-mm—infiltration rate is no longer affected by FMT. Fracture aperture variations promote in-fracture-plane fingering, with counter-current flow of water (downward) and air (upward). Fracture flow interacts with FMT in a complex fashion. For systems with a small fracture porosity (≤0.01%), our results suggest that intense, hour-long rainfall events can give rise to tens-of-meter-deep infiltration, depending on fracture/matrix properties and initial saturation of the fractured rock mass.


Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


CATENA ◽  
2014 ◽  
Vol 118 ◽  
pp. 226-233 ◽  
Author(s):  
Stefan Martin Strohmeier ◽  
Sayjro Kossi Nouwakpo ◽  
Chi-Hua Huang ◽  
Andreas Klik

Author(s):  
J. B. P. Williamson

This paper describes an approach to the study of surfaces based on the digital analysis of data obtained from profilometric examinations. This technique is used to determine several new surface texture parameters, including the surface density, height distribution, and mean radius of curvature of the asperities. Recent theories have shown that these are the parameters which control the nature of surface contact. The implications which these ideas have for the science of metrology are discussed. The study also shows that many surfaces have height distributions which are Gaussian, and in particular that the heights of the upper half of most surfaces closely follow a Gaussian distribution. By combining data obtained from many closely spaced parallel profiles it has been possible to reconstruct detailed maps of the surface texture. Two examples are discussed: bead-blasted aluminium, and a glass surface lightly blasted with alumina. One of the advantages of microcartography is that it permits the geometry of the contact between rough surfaces to be studied in detail. A map is given showing the manner in which the contact area between two bead-blasted aluminium surfaces splits into sub-areas, and how these sub-areas are distributed with respect to the surface features of the contacting solids.


2000 ◽  
Vol 15 (4) ◽  
pp. 898-903 ◽  
Author(s):  
A. Tatschl ◽  
C. J. Gilbert ◽  
V. Schroeder ◽  
R. Pippan ◽  
R. O. Ritchie

Fracture surfaces of a recently developed Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (at.%) bulk metallic glass were investigated using a three-dimensional surface reconstruction technique. Stereoscopic scanning electron microscopy of both fatigue and overload fracture surfaces permitted the creation of digital elevation models that were used to quantify important fracture surface features. Characterization of the surfaces revealed striations of nearly constant spacing on fatigue surfaces and a vein morphology characteristic in amorphous metals on the overload fracture surfaces. Additionally, at the onset of critical failure, crack-tip openings of ˜16 μm were observed that were consistent with measured values of fracture toughness. Interestingly, at the onset of fracture, deformation was confined to one side of the fracture plane, possibly because of the asymmetric emission of shear bands from the crack tip, consistent with the highly inhomogeneous nature of deformation in this alloy.


Sign in / Sign up

Export Citation Format

Share Document