scholarly journals Simulation of the Infiltration of Fractured Rock in the Unsaturated Zone

2021 ◽  
Vol 11 (19) ◽  
pp. 9148
Author(s):  
Luat Khoa Tran ◽  
Stephan Konrad Matthai

We study infiltration of rainwater into fractured rock and the accompanying capillary exchange processes between fractures and matrix, hereafter referred to as fracture–matrix transfer (FMT). Its influence on the velocity of the wetting front for uniform and variable aperture fractures is of prime interest because it determines the penetration depth of infiltration pulses. FMT is modelled explicitly in a discrete fracture and matrix (DFM) framework realised using a hybrid finite element–finite volume discretisation with internal boundaries. The latter separate the fracture mesh from the rock matrix mesh with the benefit that the flow that occurs within the minute fracture subvolume can be tracked with great accuracy. A local interface solver deals with the transient nonlinear aspects of FMT, including spontaneous imbibition of the rock matrix. Two- and three-dimensional heuristic test cases are used to illustrate how FMT affects infiltration. For the investigated scenario, we find that—beyond a critical fracture aperture around 5–10-mm—infiltration rate is no longer affected by FMT. Fracture aperture variations promote in-fracture-plane fingering, with counter-current flow of water (downward) and air (upward). Fracture flow interacts with FMT in a complex fashion. For systems with a small fracture porosity (≤0.01%), our results suggest that intense, hour-long rainfall events can give rise to tens-of-meter-deep infiltration, depending on fracture/matrix properties and initial saturation of the fractured rock mass.

Geophysics ◽  
1986 ◽  
Vol 51 (8) ◽  
pp. 1585-1593 ◽  
Author(s):  
R. M. Stesky

A theoretical analysis shows that electrical conductivity along fractures in a saturated porous rock is a function of many factors: fluid and rock conductivities, initial fracture aperture and contact area, fracture surface geometry (asperity height distribution and tip curvature), elastic moduli of the rock, and confining pressure or normal stress acting across the fracture. The conductivity in the fracture plane decreases approximately in proportion to log pressure, but the conductivity is influenced by the increased contact area, and hence flow‐path tortuosity, along the fracture surface at elevated pressures. Electrical conductivity in fractures is more affected by flow‐path tortuosity than is permeability. The dependence on pressure was tested using laboratory measurements of conductivity through split cores containing ground, saw‐cut surfaces in a variety of rocks under confining pressures to 200 MPa. The conductivity decreased approximately in proportion to log pressure (there was little effect of increased contact area, and hence tortuosity), which suggests that the contact area may not exceed a few percent of the total apparent area. Measurements of gas permeability through the same split cores showed that when the asperity deformation remained largely elastic, permeability and conductivity had a power of 3 relationship. When asperity collapse occurred, as in a dolomitic marble, the powerlaw relation no longer held; permeability decreased more rapidly under pressure than did conductivity. The different influences of porosity and flow aperture may account for the different behaviors of the two transport properties. The theory suggests a number of ways in which fracture parameters may be extracted from field data. Some of the methods rely on the scale dependence and pressure dependence of the fractured‐rock conductivity; other methods require correlating between different physical properties, such as seismic velocity, which are influenced by the presence of fractures.


1999 ◽  
Vol 378 ◽  
pp. 335-356 ◽  
Author(s):  
V. CVETKOVIC ◽  
J. O. SELROOS ◽  
H. CHENG

Transport of tracers subject to mass transfer reactions in single rock fractures is investigated. A Lagrangian probabilistic model is developed where the mass transfer reactions are diffusion into the rock matrix and subsequent sorption in the matrix, and sorption on the fracture surface as well as on gauge (infill) material in the fracture. Sorption reactions are assumed to be linear, and in the general case kinetically controlled. The two main simplifying assumptions are that diffusion in the rock matrix is one-dimensional, perpendicular to the fracture plane, and the tracer is displaced within the fracture plane by advection only. The key feature of the proposed model is that advective transport and diffusive mass transfer are related in a dynamic manner through the flow equation. We have identified two Lagrangian random variables τ and β as key parameters which control advection and diffusive mass transfer, and are determined by the flow field. The probabilistic solution of the transport problem is based on the statistics of (τ, β), which we evaluated analytically using first-order expansions, and numerically using Monte Carlo simulations. To study (τ, β)-statistics, we assumed the ‘cubic law’ to be applicable locally, whereby the pressure field is described with the Reynolds lubrication equation. We found a strong correlation between τ and β which suggests a deterministic relationship β∼τ3/2; the exponent 3/2 is an artifact of the ‘cubic law’. It is shown that flow dynamics in fractures has a strong influence on the variability of τ and β, but a comparatively small impact on the relationship between τ and β. The probability distribution for the (decaying) tracer mass recovery is dispersed in the parameter space due to fracture aperture variability.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1935 ◽  
Author(s):  
Guangxuan Zhu ◽  
Qingsong Zhang ◽  
Xin Lin ◽  
Rentai Liu ◽  
Lianzhen Zhang ◽  
...  

The diffusion and sealing mechanisms of cement-sodium silicate grout (C-S grout), which is widely used in flowing water sealing projects, are complicated. Based on a large-scale quasi-three-dimensional simulation test platform of fracture dynamic water grouting, an orthogonal experiment of flowing-water sealing of C-S grout was performed. The grout was shown to diffuse in the form of an asymmetric ellipse. The flowing-water sealing process consists of three stages: (1) the grout diffuses to the fracture boundary in an asymmetrical ellipse; (2) the solidified body of grout develops; (3) the stable solidified body forms. The sealing efficiency was evaluated and graded by the reduction of water drainage through the fracture after grouting. Based on the test data, the factors that affect sealing efficiency can be listed in the following order from strong to weak: grout gel time, flowing water velocity, grout take, fracture plane width, and fracture aperture. Finally, a fitting equation was acquired to provide a reference for practical engineering applications.


1990 ◽  
Vol 212 ◽  
Author(s):  
V. Taivassalo ◽  
A. Hautojärvi

ABSTRACTIn crystalline rock groundwater flows predominantly in fractures and fissures. Strongly varying fracture aperture guides the flow preferentially in some parts of a fracture plane, in so called channels. In our hydraulic model the degree of channeling together with the aperture variation along a channel is included as a factor which is the ratio of the aperture from transmissivity measurements and the aperture from the tracer tests.The developed transport model takes into account the coupling of molecular diffusion and advection in a velocity field varying linearly over a characteristic width. Various flow velocities in different parts of a channel cause a transient phase with non-Fickian behavior of dispersion. This might erroneously be attributed to other processes e.g. matrix diffusion when not taken into account in the migration modeling of tracers. Molecular diffusion across the flow field, however, tends to smooth out the transport time differences. With time the dispersion diminishes and becomes more symmetric in confined channels.The concept and models have been applied to predict and interpret field experiments aimed to investigate transport over long distances in highly conductive fracture zones. The analyzed experiments have been performed at the Finnsjön research area in Sweden and they belong to the test case 5 of the INTRAVAL project.


2020 ◽  
Author(s):  
Florian Rüdiger ◽  
Hauke Fehnker ◽  
John R. Nimmo ◽  
Jannes Kordilla

<p>Quantification of infiltration processes in the vadose zone of fractured-porous media and karst systems (epikarst), especially onset and magnitude of preferential flow, as well as the interaction between fast (fractures, macropores) and slow pathways (matrix), is still lacking a sound conceptualization.</p><p>This study presents results from laboratory experiments which were designed to delineate the control of network topology, fracture aperture, matrix imbibition and infiltration conditions on preferential flow dynamics. We create vertical 2-D fracture networks using a set of equally sized (Seeberger) sandstone blocks placed in between two transparent glass plates. Blocks are arranged to create an orthogonal network with vertical and horizontal fractures of constant aperture. Water is injected with a constant rate directly into the middle vertical fracture on the upper network boundary by a pump. Mass flux across the lower network boundary is measured by a scale to register first arrival. In addition, flow partitioning at intersections and advance of the wetting front were visually captured.</p><p>Two experiment series were carried out: (1) the effect of horizontal offset (2, 5, 10, 15, 20 and 24 mm) was studied for two different fracture apertures (1 and 3 mm), but constant infiltration rate (1.5 ml/min). (2) The fracture aperture was kept constant (1 mm) and infiltration rate was varied (0.75, 1.50 and 3.00 ml/min), as well as the offset. The first series demonstrates that greater offset is associated with pathway spreading and hence divergent behavior of the wetting front, as well as later arrival times. Pathway spreading increases the fracture-matrix interface area in total, thus preferential flow is slowed down more efficiently by the imbibition process. Less pathway spreading, and faster arrival times were observed for the larger aperture configuration (3 mm). Aperture (and infiltration rate) strongly controls flow modes. Whereas slug flow (liquid in contact with both fracture walls) is a dominant flow mode in the 1 mm aperture configuration due to capillary forces, it is not the prevailing mode in the 3 mm aperture configuration. The second series reveals faster arrival times for higher inflow rates (3.00 > 1.50 > 0.75 ml/min), as well as smaller differences between arrival times of different offsets as flow rate increases. </p><p>To capture bulk infiltration dynamics, the results can help to parameterize analytical infiltration models such as the source-responsive dual domain model, which was developed by Nimmo (2010, VADOSE ZONE J) to capture preferential flow dynamics in soils.</p>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1998
Author(s):  
Haishan Luo ◽  
Kishore K. Mohanty

Unlocking oil from tight reservoirs remains a challenging task, as the existence of fractures and oil-wet rock surfaces tends to make the recovery uneconomic. Injecting a gas in the form of a foam is considered a feasible technique in such reservoirs for providing conformance control and reducing gas-oil interfacial tension (IFT) that allows the injected fluids to enter the rock matrix. This paper presents a modeling strategy that aims to understand the behavior of near-miscible foam injection and to find the optimal strategy to oil recovery depending on the reservoir pressure and gas availability. Corefloods with foam injection following gas injection into a fractured rock were simulated and history matched using a compositional commercial simulator. The simulation results agreed with the experimental data with respect to both oil recovery and pressure gradient during both injection schedules. Additional simulations were carried out by increasing the foam strength and changing the injected gas composition. It was found that increasing foam strength or the proportion of ethane could boost oil production rate significantly. When injected gas gets miscible or near miscible, the foam model would face serious challenges, as gas and oil phases could not be distinguished by the simulator, while they have essentially different effects on the presence and strength of foam in terms of modeling. We provide in-depth thoughts and discussions on potential ways to improve current foam models to account for miscible and near-miscible conditions.


2018 ◽  
Vol 53 (12) ◽  
pp. 1681-1696 ◽  
Author(s):  
Sérgio Costa ◽  
Thomas Bru ◽  
Robin Olsson ◽  
André Portugal

This paper details a complete crush model for composite materials with focus on shear dominated crushing under a three-dimensional stress state. The damage evolution laws and final failure strain conditions are based on data extracted from shear experiments. The main advantages of the current model include the following: no need to measure the fracture toughness in shear and transverse compression, mesh objectivity without the need for a regular mesh and finite element characteristic length, a pressure dependency of the nonlinear shear response, accounting for load reversal and some orthotropic effects (making the model suitable for noncrimp fabric composites). The model is validated against a range of relevant experiments, namely a through-the-thickness compression specimen and a flat crush coupon with the fibres oriented at 45° and 90° to the load. Damage growth mechanisms, orientation of the fracture plane, nonlinear evolution of Poisson's ratio and energy absorption are accurately predicted.


1998 ◽  
Vol 35 (6) ◽  
pp. 1093-1100 ◽  
Author(s):  
J R McDougall ◽  
I C Pyrah

Transient responses to various infiltration events have been examined using an unsaturated flow model. Numerical simulations reveal a range of infiltration patterns which can be related to the ratio of infiltration rate to unsaturated hydraulic conductivity. A high value of this ratio reflects a prevailing hydraulic conductivity which cannot readily redistribute the newly infiltrated moisture. Moisture accumulates in the near-surface region before advancing down through the soil as a distinct wetting front. In contrast, low values of the ratio of rainfall to unsaturated hydraulic conductivity show minimal moisture accumulation, as the relatively small volumes of infiltrating moisture are readily redistributed through the soil profile.Key words: numerical modelling, infiltration, unsaturated soil, soil suction, groundwater.


Sign in / Sign up

Export Citation Format

Share Document