InP Layers Grown by Molecular Beam Epitaxy at Low Substrate Temperature

1991 ◽  
Vol 241 ◽  
Author(s):  
K. Xie ◽  
C. R. Wie ◽  
G. W. Wicks

ABSTRACTInP layers were grown on semi-insulating InP wafer by molecular beam epitaxy (MBE) at low substrate temperatures (<200° C), using solid phosphorus source. We use x-ray diffraction, double crystal x-ray rocking curve, Auger electron spectroscopy, and temperature-dependent Van der Pauw and Hall effect measurements to characterize the as-grown and annealed InP layers. It is found that the InP layer is in poly-crystal state with excess P over 7 at%. The layers became single crystal after annealing above 400°C. The resistivity of the InP layer decreased from 60 Ωcm for an as-grown sample to 0.82 Ωcm after 400°C RTA annealing. The different role of excess P as compared to the role played by excess As in LT-GaAs is discussed based on the P properties.

1989 ◽  
Vol 160 ◽  
Author(s):  
Brian R. Bennett ◽  
Jesús A. Del Alamo

AbstractWe applied ellipsometry to characterize layers of InxGa1-xAs grown by molecular beam epitaxy on (001) InP. Samples with mismatched layers exhibit significant anisotropy in the index of refraction. We explain these observations by the presence of misfit dislocations which form in an asymmetric pattern. This results in asymmetric strain and, via piezo-optical effects, an anisotropy in the optical properties. This effect makes ellipsometry a more sensitive technique than double-crystal x-ray diffraction for detecting misfit dislocations in these heterostructures.


1991 ◽  
Vol 241 ◽  
Author(s):  
G. Kowaljki ◽  
M. Leszcjynski ◽  
A. Kurpiewski ◽  
M. Kaminska ◽  
T. Suski ◽  
...  

ABSTRACTGaAs layers grown by molecular beam epitaxy (MBE) at low substrate temperatures (LT GaAs) were studied in a novel purpose designed X-ray experiment. It combines X-ray double crystal rocking curve measurements with some elements usually found in optical setups like light illumination at liquid nitrogen temperatures applied to transfer EL2 type defects into metastable state. Ability to record such transfers with the X-ray experiment as well as large lattice relaxation accompanying this process is presented.


2001 ◽  
Vol 696 ◽  
Author(s):  
Gu Hyun Kim ◽  
Jung Bum Choi ◽  
Joo In Lee ◽  
Se-Kyung Kang ◽  
Seung Il Ban ◽  
...  

AbstractWe have studied infrared photoluminescence (PL) and x-ray diffraction (XRD) of 400 nm and 1500 nm thick InAs epilayers on GaAs, and 4 nm thick InAs on graded InGaAs layer with total thickness of 300 nm grown by molecular beam epitaxy. The PL peak positions of 400 nm, 1500 nm and 4 nm InAs epilayer measured at 10 K are blue-shifted from that of InAs bulk by 6.5, 4.5, and 6 meV, respectively, which can be largely explained by the residual strain in the epilayer. The residual strain caused by the lattice mismatch between InAs and GaAs or graded InGaAs/GaAs was observed from XRD measurements. While the PL peak position of 400 nm thick InAs layer is linearly shifted toward higher energy with increase in excitation intensity ranging from 10 to 140 mW, those of 4 nm InAs epilayer on InGaAs and 1500 nm InAs layer on GaAs is gradually blue-shifted and then, saturated above a power of 75 mW. These results suggest that adopting a graded InGaAs layer between InAs and GaAs can efficiently reduce the strain due to lattice mismatch in the structure of InAs/GaAs.


1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


1998 ◽  
Vol 537 ◽  
Author(s):  
Nicolas Grandjean ◽  
Jean Massies ◽  
Mathieu Leroux ◽  
Marguerite Latigt ◽  
Pierre Lefebvre ◽  
...  

AbstractAIGaN/GaN quantum well (QWs) were grown on (0001) sapphire substrates by molecular beam epitaxy (MBE) using ammonia as nitrogen precursor. The Al composition in the barriers was varied between 8 and 27 % and the well thickness from 4 to 17 monolayers (MLs, 1ML = 2.59Å). X-ray diffraction (XRD) experiments are used to investigate the strain state of both the well and the barriers. The QW transition energy are measured by low temperature photoluminescence (PL). A large quantum confined Stark effect is observed leading to QW luminescence much lower than the emission line of the GaN buffer layer for well width above a certain critical thickness. The built-in electric field responsible for such a phenomenon is deduced from fit of the PL data. Its magnitude is of several hundred kV/cm and increases linearly with the Al composition.


1987 ◽  
Vol 103 ◽  
Author(s):  
J. M. Vandenberg ◽  
M. B. Panish ◽  
R. A. Hamm

ABSTRACTHigh-resolution X-ray diffraction (HRXRD) studies have been cardied out to determine the structural perfection and periodicity for a number of high-quality InGaAsfInP superlattices grown by gas source molecular beam epitaxy. X-ray scans were carried out with a compact four-crystal monochromator resulting in a resolution of one molecular layer (∼3,Å), which enables one to observe very small variations in the periodic structure. Sharp and strong higher-order satellite reflections in the XRD profiles were observed indicating smooth interfaces with well-defined modulated structures. Excellent computer simulated fits of the X-ray satellite pattern could be generated based on a kinematical XRD step model which assumes ideally sharp interfaces, and periodic structural parameters such as the strain in the well could be extracted. Our results3 demonstrate that HRXRD in conjunction with the kinematical step model is a very sensitive method to assess periodic structural modifications in superlattices as a result of the precise growth conditions in the gas source MBE system.


2000 ◽  
Vol 39 (Part 1, No. 7B) ◽  
pp. 4554-4557 ◽  
Author(s):  
Kazuhiro Nakamura ◽  
Hirofumi Shimizu ◽  
Jun Kodera ◽  
Katsuhiro Yokota

Sign in / Sign up

Export Citation Format

Share Document