Structure and Dynamics of the Ferrosmectic Phase

1991 ◽  
Vol 248 ◽  
Author(s):  
Pascale Fabre

AbstractWe have elaborated a system -that we call a ferrosmectic- which contains magnetic particles included in a lamellar phase. Because of the presence of the confined particles, this phase exhibits specific features that are revealed by submitting it to a magnetic field as well as by neutrons or quasi-elastic light scattering experiments. We present here a review of the different properties of this ferrosmectic phase.

1972 ◽  
Vol 33 (C1) ◽  
pp. C1-169-C1-169
Author(s):  
Y. YEY ◽  
T. M. SCHUSTER ◽  
D. A. YPHANTIS

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


1990 ◽  
Vol 55 (12) ◽  
pp. 2889-2897
Author(s):  
Jaroslav Holoubek

Recent theoretical work has shown that the complete set of polarized elastic light-scattering studies should yield information about scatterer structure that has so far hardly been utilized. We present here calculations of angular dependences of light-scattering matrix elements for spheres near the Rayleigh and Rayleigh-Gans-Debye limits. The significance of single matrix elements is documented on examples that show how different matrix elements respond to changes in particle parameters. It appears that in the small-particle limit (Rg/λ < 0.1) we do not loose much information by ignoring "large particle" observables.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Philip James Camp ◽  
John Philip

We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three...


2021 ◽  
Vol 7 (5) ◽  
pp. 82
Author(s):  
River Gassen ◽  
Dennis Thompkins ◽  
Austin Routt ◽  
Philippe Jones ◽  
Meghan Smith ◽  
...  

Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 μμm2, and the particle cluster diameter ranged from 5 to 45 μμm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.


2021 ◽  
Vol 12 (1) ◽  
pp. 270-281
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Marina Krumova ◽  
Sebastian Polarz ◽  
...  

The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 758-766 ◽  
Author(s):  
SONIA MELLE ◽  
MIGUEL A. RUBIO ◽  
GERALD G. FULLER

The formation and orientation of field-induced structures in magnetorheological (MR) fluids subject to rotating magnetic fields have been studied using two optical methods: scattering dichroism and small angle light scattering (SALS). The SALS patterns show how these chain-like aggregates follow the magnetic field with the same frequency but with a retarded phase angle for all the frequencies measured. Using scattering dichroism two different behaviors for both, dichroism and phase lag, are found below or above a critical frequency. Experimental results have been reproduced by a simple model considering the torques balance on the chain-like aggregates.


Sign in / Sign up

Export Citation Format

Share Document