Rapid Growth of Ceramic Films by Particle-Vapor Codeposition

1991 ◽  
Vol 250 ◽  
Author(s):  
Robert H. Hurt ◽  
Mark D. Allendorf

AbstractParticle-enhanced chemical vapor deposition (PECVD) is capable of producing ceramic films at high deposition rates. A mathematical model of the particle-vapor codeposition process has been developed and has been applied to PECVD processes to predict deposition rate enhancements and deposit properties.

2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


2021 ◽  
Author(s):  
Omar D. Jumaah ◽  
Yogesh Jaluria

Abstract Chemical vapor deposition (CVD) is a widely used manufacturing process for obtaining thin films of materials like silicon, silicon carbide, graphene and gallium nitride that are employed in the fabrication of electronic and optical devices. Gallium nitride (GaN) thin films are attractive materials for manufacturing optoelectronic device applications due to their wide band gap and superb optoelectronic performance. The reliability and durability of the devices depend on the quality of the thin films. The metal-organic chemical vapor deposition (MOCVD) process is a common technique used to fabricate high-quality GaN thin films. The deposition rate and uniformity of thin films are determined by the thermal transport processes and chemical reactions occurring in the reactor, and are manipulated by controlling the operating conditions and the reactor geometrical configuration. In this study, the epitaxial growth of GaN thin films on sapphire (AL2O3) substrates is carried out in two commercial MOCVD systems. This paper focuses on the composition of the precursor and the carrier gases, since earlier studies have shown the importance of precursor composition. The results show that the flow rate of trimethylgallium (TMG), which is the main ingredient in the process, has a significant effect on the deposition rate and uniformity of the films. Also the carrier gas plays an important role in deposition rate and uniformity. Thus, the use of an appropriate mixture of hydrogen and nitrogen as the carrier gas can improve the deposition rate and quality of GaN thin films.


1994 ◽  
Vol 9 (7) ◽  
pp. 1721-1727 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu ◽  
Ching-Yi Tsai

Synthesis of zirconium tetramethylheptanedione [Zr(thd)4] was optimized. Purity of Zr(thd)4 was confirmed by melting point determination, carbon, and hydrogen elemental analysis and proton nuclear magnetic resonance spectrometer (NMR). By using Zr(thd)4, excellent quality ZrO2 thin films were successfully deposited on single-crystal silicon wafers by metal-organic chemical vapor deposition (MOCVD) at reduced pressures. For substrate temperatures below 530 °C, the film deposition rates were very small (⋚1 nm/min). The film deposition rates were significantly affected by (i) source temperature, (ii) substrate temperature, and (iii) total pressure. As-deposited films are carbon free. Furthermore, only the tetragonal ZrO2 phase was identified in as-deposited films. The tetragonal phase transformed progressively into the monoclinic phase as the films were subjected to a high-temperature post-deposition annealing. The optical properties of the ZrO2 thin films as a function of wavelength, in the range of 200 nm to 2000 nm, were also reported. In addition, a simplified theoretical model which considers only a surface reaction was used to analyze the deposition of ZrO2 films. The model predicated the deposition rates well for various conditions in the hot wall reactor.


1993 ◽  
Vol 335 ◽  
Author(s):  
Feng Gao ◽  
Ray Y. Lin

AbstractA theoretical model, which describes the coupled hydrodynamics, mass transport and chemical reaction, has been developed to simulate chemical vapor deposition (CVD) of silicon carbide (SiC) from gas mixture of methyltrichlorosilane (MTS), hydrogen and argon in a hot wall reactor. In the model analysis, the governing equations were developed in the cylindrical coordinate, and solved numerically by using a finite difference method. A kinetic rate expression of CVD-SiC deposition from the gas mixture was obtained from this study. The deposition rate has an Arrhenius-type dependence on the deposition temperature and is first order with respect to the MTS concentration. Estimated activation energy is 254 kJ/mol. Predicted deposition rate profiles by the model analysis incorporated with the obtained kinetic rate expression showed excellent agreement with experimental data over a variety of applied deposition conditions.


Nanoscale ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 6991-6999 ◽  
Author(s):  
Na Liu ◽  
Woong Choi ◽  
Hyeongi Kim ◽  
Chulseung Jung ◽  
Jeonghun Kim ◽  
...  

Rapid growth of high-crystalline MoSe2 nanosheets with grain size of up to ∼100 μm and yield of milligrams per hour.


Sign in / Sign up

Export Citation Format

Share Document