Reactions in the System Basalt/Simulated Spent Fuel/Water

1983 ◽  
Vol 26 ◽  
Author(s):  
D.E. Grandstaff ◽  
G.L. Mckeon ◽  
E.L. Moore ◽  
G.C. Ulmer

ABSTRACTThe Grande Ronde Basalts underlying the Hanford Site are being evaluated as a possible site for a high-level nuclear waste repository. Experiments, in which basalt from the Umtanun flow of the Grande Ronde Basalt and basalt with simulated spent fuel were reacted with synthetic Hanford groundwater, were conducted to determine steady state concentrations which can be used in radionuclide release-rate models. Tests were performed at temperatures of 100°, 200°, and 300°C; 30 MPa pressure, and a solution:solid mass ratio of 10:1 for durations up to 7,000 hr. Solution aliquots were extracted periodically during the experiments for analysis. The pH was measured at 250°C and recalculated to higher temperatures. In the basalt-water system the stable high-temperature pH values achieved were 7.2 (100°C), 7.5 (200°C), and 7.6 (300°C). Solution composition variations are due to mesostasis (glass) dissolution and precipitation of secondary phases. Solution measurements indicate a redox potential (Eh) of about -0.7 volts at 300°C. Secondary phases produced include silica, potassium feldspar, iron oxides, clays, scapolite, and zeolites. Tests in the basalt + simulated spent fuel + water systen show that calculated pH values stabilized near 7.6 (100°C), 7.2 (200°C), and 7.7 (300°C). At higher temperatures, solution concentrations were controlled by secondary phases similar to those found in basalt-water tests. Less than 1% of uranium, thorium, samarium, rhenium, cerium, and palladium were released to solution while somewhat higher amounts of iodine, molybdenum, and cesium were released. The UO2 component was unreactive; however, other components (e.g., cesium-bearing phases) were almost completely dissolved. Secondary phases incorporating radionuclide-analog elements include clays, palladium sulfide, powellite, coffinite, and a potassium-uranium silicate.

1987 ◽  
Vol 112 ◽  
Author(s):  
Shirley A. Rawson ◽  
William L. Neal ◽  
James R. Burnell

AbstractThe Basalt Waste Isolation Project has conducted a series of hydrothermal experiments to characterize waste/barrier/rock interactions as a part of its study of the Columbia River basalts as a potential medium for a nuclear waste repository. Hydrothermal tests of 3–15 months duration were performed with light water reactor spent fuel and simulated groundwater, in combination with candidate container materials (low-carbon steel or copper) and/or basalt, in order to evaluate the effect of waste package materials on spent fuel radionuclide release behavior. Solutions were filtered through 400 and 1.8 nm filters to distinguish colloidal from dissolved species. In all experiments, 14C, 129I, and 137Cs occurred only as dissolved species, whereas the actinides occurred in 400 nm filtrates primarily as spent fuel particles. Actinide concentrations in 1.8 nm filtrates were below detection in steel-bearing experiments. In the system spent fuel + copper, apparent time-invariant concentrations of 14C and 137Cs were obtained, but in the spent fuel + steel system, the concentrations of 14C and 137Cs increased gradually throughout the experiments. In experiments containing basalt or steel + basalt, 137Cs concentrations decreased with time. In tests with copper + basalt, 14C and 129I concentrations attained time-invariant values and 137Cs concentrations decreased. Concentrations for the actinides and fission products measured in these experiments were below those calculated from Federal regulations governing radionuclide release.


2012 ◽  
Vol 1475 ◽  
Author(s):  
I. G. McKinley ◽  
F. B. Neall ◽  
E. M. Scourse ◽  
H. Kawamura

ABSTRACTConcepts for the disposal of high-level radioactive waste (HLW) and spent fuel (SF) in several countries include a massive steel overpack within a bentonite buffer. In past conservative safety assessments to demonstrate feasibility of geological disposal, overpacks are assumed to provide complete containment for a given lifetime, after which all fail simultaneously. After failure, they are ignored as physical barriers to radionuclide transport. In order to compare different repository designs for specific sites, however, a more realistic treatment of overpack failure and its subsequent behaviour is needed. In addition to arguing for much longer lifetimes before mechanical failure and a distribution of overpack failure times, such assessment indicates that the presence of the failed overpack greatly constrains radionuclide release from the waste matrix and subsequent migration through the engineered barrier system. It also emphasises the key role of the bentonite buffer and the need to be able to assure its performance over relevant timescales.


1984 ◽  
Vol 44 ◽  
Author(s):  
R. E. Thornhill ◽  
C. A. Knox

AbstractIt is important in nuclear waste repository development that testing be done with materials containing a radionuclide spectrum representative of actual wastes. To meet the need for such materials, the Materials Characterization Center (MCC) has prepared simulated high level waste (HLW) glasses with radionuclides representative of about 10-, 300-, and 1000-year-old waste. A quantity of well characterized spent fuel also has been acquired for the same purpose. Glasses containing 10- and 300-year-old wastes, and the spent fuel specimens, must be fabricated in a hot cell. Hot cell conditions (high radiation field, remote operation, and difficulty of repairs) require that procedures and equipment normally used in materials preparation out-of-cell be modified for hot cell applications.This paper discusses the fabrication of two glasses, and the preparation of test specimens of these glasses and spent fuel. One of the glasses is a 76–68 composition, which is fully loaded with actual commercial reactor fission product waste. The other glass contains simulated Barnwell Nuclear Fuel Plant waste, doped with different combinations of fission products and actinides. The spent fuel is a 10-year-old PWR material. Special techniques have been used to achieve high quality, well characterized testing materials, including specimens in the form of segments, wafers, cylinders, and powders of these materials.


1999 ◽  
Vol 556 ◽  
Author(s):  
David A. Pickett ◽  
William M. Murphy

AbstractChemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone.


1983 ◽  
Vol 26 ◽  
Author(s):  
D.L. Lane ◽  
M.J. Apted ◽  
C.C. Allen ◽  
J. Myers

ABSTRACTHigh-level nuclear Waste emplaced in a repository in basalt will lead to elevated temperatures and chemical reactions between the basalt and repository groundwater. The resultant changes in groundwater chemistry and the formation of secondary minerals will affect radionuclide release rates from the repository. In this study, Grande Ronde Basalt and synthetic groundwater were reacted at temperatures of 100°, 150°, and 300°C at a pressure of 30 MPa. Dickson-type sampling autoclaves were used to follow solution composition changes with time. Solution PH remained weakly alkaline, while steady state concentrations of F-, Cl-, SO4-2, and total Carbon were similar to or lower than initial values. Alteration assemblages at 300°C included silica, zeolites, potassium feldspar, and iron smectite. These assemblages are metastable, and prediction of alteration in the basalt and packing material depends on “accelerated” tests results and must be supplemented by study of metastable assemblages in natural analog systems and by tests in open systems with varying flow rates. Experimental data are consistent with rapid adjustment of Eh to reducing values; however, more work on reaction rates and buffering capacity is in progress.


2000 ◽  
Vol 663 ◽  
Author(s):  
C. Jégou ◽  
S. Peuget ◽  
J.F. Lucchini ◽  
C. Corbel ◽  
V. Broudic ◽  
...  

ABSTRACTFor a potential performance assessment of direct disposal of spent fuel in a nuclear waste repository, the chemical reactions between the fuel and possible intruding water must be understood and the resulting radionuclide release must be quantified.Leaching experiments were performed with five spent fuel samples from French power reactors (four UO2 fuel samples with burnup ratings of 22, 37, 47 and 60 GWd·tHM−1 and a MOX fuel sample irradiated to 47 GWd·tHM−1) to determine the release kinetics of the matrix containing most (over 95%) of the radionuclides. The experiments were carried out with granitic groundwater on previously leached sections of clad fuel rods in static mode, in an aerated medium at room temperature (25°C) in a hot cell.After 1000 or 2000 days of leaching, the Sr/U congruence ratios for all the UO2 fuel samples ranged from 1 to 2; allowing for the experimental uncertainty, strontium can thus be considered as a satisfactory matrix alteration tracer. No significant burnup effect was observed on the alteration of the UO2 fuel matrix. The daily strontium release factor was approximately 1 à 10−7 d−1 for UO2 fuel, and five to six times higher for MOX fuel. Several alteration mechanisms (radiolysis, solubility, precipitation/clogging) are examined to account for the experimental findings.


2009 ◽  
Vol 1193 ◽  
Author(s):  
D. Roudil ◽  
C. Jegou ◽  
V. Broudic ◽  
M. Tribet

AbstractTo assess the long-term behavior of spent fuel in a nuclear waste repository, the chemical reactions between the fuel and possible intruding water must be understood and the resulting radionuclide release must be quantified. The instant release fraction (IRF) source term assumed to be instantaneously accessible to water after the failure of the waste container. Some IRF values for different kinds of spent fuel are available in the literature. However, the possible contribution the rim restructured zone for high-burnup UOX fuels, was not necessary taken into account. A specific study of the leaching behavior of the rim zone has been carried out on a UOX fuel sample with a burnup of 60 GWd·t-1 and 2.8% FGR. The 134/137Cs and 90Sr rim IRF are effectively higher than the gap and grain boundary inventories (respectively 4.4 wt% and 0.3 wt% of the total Cs and Sr inventories). Nevertheless because of the relative small volume of this zone in the pellet, the impact of the rim inventory appears to be limited and the complete Cs and Sr IRF (gap, grain boundaries and rim), were estimated at 1.85 and 0.3 wt%, respectively


1986 ◽  
Vol 84 ◽  
Author(s):  
N.H. Uziemblo ◽  
L.E. Thomas ◽  
L.H. Schoenlein ◽  
B. Mastel ◽  
E.D. Jenson

AbstractReacted solids from 200°C, 25 MPa tests with spent light water reactor fuel and other component materials of a high-level nuclear waste repository in basalt were analyzed by scanning electron microscopy, X-ray powder diffractometry, transmission electron diffraction, Auger electron spectrome- try, and microautoradiography. The work complements solutions analysis from the same tests conducted in Dickson-type rocking autoclaves for the Basalt Waste Isolation Project. Spent fuel reacted very slowly in fuel/water tests, exhibiting noticeable grain boundary etching and uranium silicate formation only after six months. Particle abrasion in the rocking autoclave produced fuel fines that remained apparently unaltered. In spent fuel tests with basalt or basalt and steel, iron smectite clay formed at the expense of mesostasis phases in the basalt. Low concentrations of β-emitters, probably Cs and Tc released from grain boundaries in the fuel, were incorporated in the clay. Steel corroded very slowly under the low-oxygen conditions of the tests, forming minor amounts of magnetite, hematite and wustite. The sluggishness of spent fuel/water and steel/water reactions is attributed to limited availability of oxygen under the test conditions.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2269 ◽  
Author(s):  
Seok Yoon ◽  
WanHyoung Cho ◽  
Changsoo Lee ◽  
Geon-Young Kim

Engineered barrier system (EBS) has been proposed for the disposal of high-level waste (HLW). An EBS is composed of a disposal canister with spent fuel, a buffer material, backfill material, and a near field rock mass. The buffer material is especially essential to guarantee the safe disposal of HLW, and plays the very important role of protecting the waste and canister against any external mechanical impact. The buffer material should also possess high thermal conductivity, to release as much decay heat as possible from the spent fuel. Its thermal conductivity is a crucial property since it determines the temperature retained from the decay heat of the spent fuel. Many studies have investigated the thermal conductivity of bentonite buffer materials and many types of soils. However, there has been little research or overall evaluation of the thermal conductivity of Korean Ca-type bentonite buffer materials. This paper investigated and analyzed the thermal conductivity of Korean Ca-type bentonite buffer materials produced in Gyeongju, and compared the results with various characteristics of Na-type bentonites, such as MX80 and Kunigel. Additionally, this paper suggests various predictive models to predict the thermal conductivity of Korean bentonite buffer materials considering various influential independent variables, and compared these with results for MX80 and Kunigel.


1991 ◽  
Vol 257 ◽  
Author(s):  
Son N. Nguyen ◽  
Homer C. Weed ◽  
Herman R. Leider ◽  
Ray B. Stout

ABSTRACTThe modelling of radionuclide release from waste forms is an important part of the performance assessment of a potential, high-level radioactive waste repository. Since spent fuel consists of UO2 containing actinide elements and other fission products, it is necessary to determine the principal parameters affecting UO2 dissolution and quantify their effects on the dissolution rate before any prediction of long term release rates of radionuclides from the spent fuel can be made.


Sign in / Sign up

Export Citation Format

Share Document