Oxidation of Semiconducting Iron Disilicide (β-FeSi2)

1992 ◽  
Vol 260 ◽  
Author(s):  
Nils Lundberg ◽  
U. Erlesand ◽  
M. Östling

ABSTRACTIron disilicide (β-FeSi2) has gained significant importance in recent years because of its semiconducting properties. The bandgap is reported to be direct with an energy of 0.85–0.89 eV, thus making the suicide a potential candidate for optical communications and detector applications. Compatibility with standard VLSI processing might involve a suicide thermal oxidation step. This work concerns the kinetics of both dry and wet oxidations of β-FeSi2. The oxide quality was characterized with respect to the electrical breakdown voltage. The results indicate an oxidation temperature dependence of the oxide quality and that dry oxidation yield higher breakdown voltage than wet oxidation. Structural and semiconducting suicide properties were investigated before and after oxidation. High energy implantation of xenon was used in a marker experiment to investigate a possible change of oxidation mechanism between dry and wet oxidation.

2012 ◽  
Vol 174-177 ◽  
pp. 1339-1343 ◽  
Author(s):  
Hong Min Kan ◽  
Ning Zhang ◽  
Xiao Yang Wang ◽  
Hong Sun

Hydrogen is considered a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density, great variety of potential sources, light weight and low environmental impact (water is the sole combustion product). Due to low price and abundance magnesium should be considered as a potential candidate for hydrogen storage. Recent progress in the application of Magnesium-based nanostructured and composite materials in hydrogen storage is presented in this review. The main focus is on the synthesis of composite material, the design of nanocomposite material, the improvement of the thermodynamical properties and kinetics of hydrogenation/dehydrogenation and the improvement of resistance towards oxygen contamination.


1995 ◽  
Vol 400 ◽  
Author(s):  
S. Bellini ◽  
G. Mazzone ◽  
A. Montone ◽  
M. Vittori-antisari Enea ◽  
C.R. Casaccia

AbstractThe diffusion properties of a Ni-Zr metallic glass formed at the interface of a bulk diffusion couple have been studied in conditions far from a fully relaxed state. The growth kinetics of the interface film have been enhanced by both plastic deformation and high energy electron irradiation. Different results have been obtained in the two cases, since in the first case the film grows exponentially with time, while in the second case the usual square root dependence on time is observed. This behaviour has been interpreted as a consequence of the annihilation kinetics of the excess free volume introduced in the glass by the above methods. Two different mechanisms of free volume annihilation , namely exchange with a crystal vacancy at the glass-crystal interface and structural relaxation in the bulk glassy phase have been considered to be operative so that the nature of the growth kinetics has been found to depend on the mechanism predominant in each experimental condition.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


1991 ◽  
Vol 260 (3) ◽  
pp. E430-E435 ◽  
Author(s):  
I. Raz ◽  
A. Katz ◽  
M. K. Spencer

The effect of epinephrine (E) infusion on insulin-mediated glucose metabolism in humans has been studied. Eight glucose-tolerant men were studied on two separate occasions: 1) during 120 min of euglycemic hyperinsulinemia (UH, approximately 5 mM; 40 mU.m-2.min-1); and 2) during UH while E was infused (UHE, 0.05 microgram.kg-1.min-1). Biopsies were taken from the quadriceps femoris muscle before and after each clamp. Glucose disposal, correcting for endogenous glucose production, was 36 +/- 3 and 18 +/- 2 (SE) mumol.kg fat-free mass (FFM)-1.min-1 during the last 40 min of UH and UHE, respectively (P less than 0.001). Nonoxidative glucose disposal (presumably glycogenesis) averaged 23.0 +/- 3.0 and 4.0 +/- 1.1 (P less than 0.001), whereas carbohydrate oxidation (which is proportional to glycolysis) averaged 13.1 +/- 1.4 and 15.3 +/- 1.1 mumol.kg FFM-1.min-1 (P less than 0.05) during UH and UHE, respectively. UHE resulted in significantly higher contents of UDP-glucose, hexose monophosphates, postphosphofructokinase intermediates, and glucose 1,6-bisphosphate (G-1,6-P2) in muscle (P less than 0.05-0.001), but there were no significant differences in high-energy phosphates or fructose 2,6-bisphosphate (F-2,6-P2) between treatments. Fractional activities of phosphorylase increased (P less than 0.01), and glycogen synthase decreased (P less than 0.001) during UHE. It is concluded that E inhibits insulin-mediated glycogenesis because of an inactivation of glycogen synthase and an activation of glycogenolysis. E also appears to inhibit insulin-mediated glucose utilization, at least partly, because of an increase in G-6-phosphate (which inhibits hexokinase) and enhances glycolysis by G-1,6-P2-, fructose 6-phosphate-, and F-1,6-P2-mediated activation of PFK.


Sign in / Sign up

Export Citation Format

Share Document