Tem Study of Temperature Influence on The Crystalline Quality of InGaAs/Si Epilayers

1992 ◽  
Vol 263 ◽  
Author(s):  
A. Vila ◽  
A. Cornet ◽  
J.R. Morante ◽  
D.I. Westwood

ABSTRACTA Transmission Electron Microscopy (TEM) study of In0.53Ga0.47As Molecular Beam Epitaxy films grown at different temperatures onto misoriented Si (100) substrates is presented. The evolution of the density of the different kind of defects is discussed as a function of the growth temperature in the range between 200 and 500° C. The results are compared with the characterization techniques of Double Crystal X-Ray Diffraction and Hall effect.

2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


1995 ◽  
Vol 399 ◽  
Author(s):  
M. Shima ◽  
L. Salamanca-Riba ◽  
G. Springholz ◽  
G. Bauer

ABSTRACTMolecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2236
Author(s):  
Arántzazu Núñez-Cascajero ◽  
Fernando B. Naranjo ◽  
María de la Mata ◽  
Sergio I. Molina

Compact Al0.37In0.63N layers were grown by radiofrequency sputtering on bare and 15 nm-thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both techniques show an improvement of the structural properties when the AlInN layer is grown on a 15 nm-thick AlN buffer. The layer grown on bare silicon exhibits a thin amorphous interfacial layer between the substrate and the AlInN, which is not present in the layer grown on the AlN buffer layer. A reduction of the density of defects is also observed in the layer grown on the AlN buffer.


Author(s):  
J.F. Bi ◽  
K.L. Teo

This article discusses the structure characterizations, magnetic and transport behaviors of the nanoscale ferromagnetic semiconductors Ge1-xMnxTe grown by molecular beam epitaxy with various manganese compositions x ranging from 0.14 to 0.98. After providing an overview of the growth procedure and characterization, the article analyzes the structures of the Ge1-xMnxTe system using X-ray diffraction and high-resolution transmission electron microscopy. It then considers the optical, magnetic and transport properties of the semiconductors and shows that the crystal quality is degraded and the proportion of amorphous phase increases with increasing Mn composition. Nanoclusters and nanoscale grains can be observed when x > 0.24, which greatly affect their magnetic and electronic properties. The magnetic anisotropy is weakened due to different orientations of the clusters embedded in the GeTe host. An anomalous Hall effect is also observed in the samples, which can be attributed to extrinsic skew scattering.


2008 ◽  
Vol 1108 ◽  
Author(s):  
Costel Constantin ◽  
kai sun ◽  
Randall M Feenstra

AbstractIn this work we explore both the initial nucleation and the stoichiometry of rutile-TiO2(001) grown on wurtzite GaN(0001) by radio-frequency O2-plasma molecular beam epitaxy. Two studies are performed; in the first, the dependence of the growth on stoichiometry (Ti-rich and O-rich) is observed using reflection high energy electron diffraction and high resolution transmission electron microscopy. In the second study we examine the effect of different initial nucleation surfaces (i.e. Ga-terminated and excess Ga-terminated) and compare the interfaces and bulk crystallinity of the TiO2(001) films grown on top of these surfaces. High-resolution transmission electron microscopy and x-ray diffraction measurements show a better interface for TiO2(001)/Ga-terminated - GaN(0001) as compared to the TiO2(001)/excess Ga-terminated- GaN(0001).


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document