Investigation of titanium nitride films prepared by ion-beam-assisted deposition at high Ar+/Ti ratio

1992 ◽  
Vol 268 ◽  
Author(s):  
J. H. Hsieh ◽  
D. E. Bush ◽  
R. A. Erck ◽  
G. R. Fenske ◽  
F. A. Nichols

ABSTRACTTitanium nitride films were prepared by reactive ion beam assisted deposition (RIBAD) with Ar+/Ti ratios ranging from 1.0 to 2.3. The compositions, phases and textures of these films were studied by AES and XRD as a function of Ar+/Ti ratio and nitrogen partial pressure. The results indicate that the IBAD titanium nitride films deposited at high Ar+/Ti ratio and low nitrogen partial pressure may have reduced nitrogen concentration, (200) preferred orientation, and possibly contain the Ti2N phase.

1988 ◽  
Vol 128 ◽  
Author(s):  
G. K. Hubler ◽  
D. Vanvechten ◽  
E. P. Donovan ◽  
R. A. Kant

ABSTRACTThe composition of titanium nitride films prepared by ion beam assisted deposition was studied as a function of the partial pressure of N2 gas in the deposition volume, and as a function of the impingement 'ratio of nitrogen ions (500 eV) to evaporated titanium atoms. The amount of nitrogen incorporated from the ambient gas was derived by subtraction of the fraction introduced by the ion beam. It is shown that the primary effects of ion bombardment are an increase in the sticking coefficient and a reduction in the number of active surface adsorption sites.


2016 ◽  
Vol 185 ◽  
pp. 295-298 ◽  
Author(s):  
Lin-Ao Zhang ◽  
Hao-Nan Liu ◽  
Xiao-Xia Suo ◽  
Shuo Tong ◽  
Ying-Lan Li ◽  
...  

1996 ◽  
Vol 84 (1-3) ◽  
pp. 439-442 ◽  
Author(s):  
A. Königer ◽  
J.W. Gerlach ◽  
H. Wengenmair ◽  
C. Hammerl ◽  
J. Hartmann ◽  
...  

1989 ◽  
Vol 157 ◽  
Author(s):  
Wang Xi ◽  
Zhou Jiankun ◽  
Chen Youshan ◽  
Liu Xianghuai ◽  
Zou Shichang

ABSTRACTA Monte-Carlo computer simulation has been performed to describe, at atomic level, the growth of titanium nitride films formed by ion beam enhanced deposition (IBED). The simulation is based on a random target, fixed free path of moving particles and binary collisions. An alternate process of deposition of titanium atoms and implantation of nitrogen ions is applied instead of the actual continuous and synchronous process of IBED. According to the actual conditions, the adsorption of nitrogen gas, which is leaked out from the ion source, at the fresh titanium layer surface has been considered. In addition, the change of the composition profile and the density profile during film growth is taken into account. It is demonstrated that the width of the intermixed region between the film and substrate increases with the increase of the atomic arrival ratio, R, of implanted nitrogen ions to deposited titanium atoms. When the titanium deposition rate is low, the nitrogen concentration of the film is relatively insensitive to R, indicating that a dominant contribution to the nitrogen concentration is derived from the nitrogen gas leaked out from the ion source. The results obtained in this study are in agreement with the experimental measurements.


2007 ◽  
Vol 555 ◽  
pp. 303-308
Author(s):  
Ž. Bogdanov ◽  
N. Popović ◽  
M. Zlatanović ◽  
B. Goncić ◽  
Z. Rakočević ◽  
...  

The reactive sputter deposition of TiN thin films onto glass substrate at the ambient temperature using a homemade broad beam argon ion source was investigated in order to deposit the films with nanostructural characteristics. While constant Ar beam energy of 2 keV was used, the N2 partial pressure and the substrate current, adjusted by different accelerator grid potentials (Vacc) were varied. A negative substrate bias voltage (100 V) was additionally applied. The TiN film structure was investigated by XRD and STM methods. All deposited films exhibited (220) preferred orientation, and the change in normalized peak intensity (I220/d), lattice spacing (d220) and full-with at half-maximum (FWHM) were investigated. As a result of higher energy bombardment with 100 V negative substrate bias, compared to the substrate current change with Vacc, nearly constant (220) peak broadening with the increase of N2 partial pressure was obtained. The measured grain diameter (STM and XRD) confirms that the grain size is less than 12 nm, and the (220) preferred orientation was disturbed but not destructed.


2011 ◽  
Vol 5 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Mirjana Novakovic ◽  
Maja Popovic ◽  
Natasa Bibic

This paper presents a study of micro-structural changes induced in CrN layers by irradiation with 120 keV argon ions. The layers were deposited on (100) Si wafers, at different nitrogen partial pressures (2?10-4, 3.5?10-4 and 5?10-4 mbar), to a total thickness of 260-280 nm. During deposition the substrates were held at 150?C. After deposition the samples were irradiated with argon ions to the fluencies of 1?1015 and 1?1016 ions/cm2, under the vacuum of 7?10-6 mbar. Characterization of the samples structure and morphology were performed by X-ray diffraction (XRD) analysis and cross-sectional transmission electron microscopy (XTEM), and the concentration profiles were determined by Rutheford backscattering (RBS) spectrometry. It was found that the layer composition strongly depends on the nitrogen partial pressure during deposition. A pure stoichiometric CrN phase was achieved for the highest nitrogen partial pressure (5?10-4 mbar). Argon ions irradiation induces micro-structural changes in the CrN layers such as variation of the lattice constants, micro-strain and mean grain size.


Sign in / Sign up

Export Citation Format

Share Document