Electrical Conductivity as a Function of Temperature of Diamond films Grown by Downstream Microwave Plasma Chemical Vapor Deposition

1992 ◽  
Vol 270 ◽  
Author(s):  
Brian R. Stoner ◽  
Jesko A. von Windheim ◽  
Jeffrey T. Glass

ABSTRACTElectrical conductivity measurements were used to study the effects that sample distance from the plasma during growth has on the carrier transport properties of undoped CVD diamond. The films were grown by downstream microwave plasma chemical vapor deposition at distances from 0.5 to 2.0 cm from the edge of plasma glow. Electrical conductivity measurements were performed between room temperature and 1000 °C to gain a better understanding of the CVD growth process and the resulting electrical properties of the diamond film's. Room temperature electrical conductivity was found to vary by over 5 orders of magnitude with increasing growth distance from the plasma, and this is attributed to decreasing hydrogen incorporation efficiencies at further distances from the plasma.

2008 ◽  
Vol 47 (4) ◽  
pp. 3050-3052
Author(s):  
Masataka Moriya ◽  
Yuji Matsumoto ◽  
Yoshinao Mizugaki ◽  
Tadayuki Kobayashi ◽  
Kouichi Usami

2000 ◽  
Vol 9 (7) ◽  
pp. 545-549
Author(s):  
Zhang Yong-ping ◽  
Gu You-song ◽  
Chang Xiang-rong ◽  
Tian Zhong-zhuo ◽  
Shi Dong-xia ◽  
...  

CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Weihua Wang ◽  
Bing Dai ◽  
Guoyang Shu ◽  
Yang Wang ◽  
Benjian Liu ◽  
...  

Diamond nucleation on iridium (001) substrates was investigated under different bias conditions. High-density epitaxial nucleation can be obtained in a narrow bias window. This paper reports both the typical nucleation...


Sign in / Sign up

Export Citation Format

Share Document