Early Homoepitaxy of Au and pt (100) with Surface-Embedded-Atom Potentials

1992 ◽  
Vol 280 ◽  
Author(s):  
Michael I. Haftel ◽  
Mervine Rosen

ABSTRACTUsing embedded atom potentials fit to both bulk and surface properties, we explore the submonolayer vapor deposition of Au and Pt onto reconstructed (100) surfaces with the MD code DAMSEL. The surface geometries are determined by computational annealing over .6 ns. Surface reconstruction has a strong influence on the effects of adatoms. In Au and Pt the deposited atoms are absorbed into the surface and surface structures form by atomic replacement sequences and collective motion over the surface and substrate. On Au the reconstructed corrugated surface evolves into one characterized by two-dimensional mounds as coverage is increased. On reconstructed Pt, which exhibits alternately quasihexagonal and bulk-like regions, adatoms initially form strings above the bulk-like regions parallel to the (110] corrugation rows. At about .5 monolayer coverage the quasihexagonal structure of the top substrate layer transitions to a bulk-like structure in both Au and Pt

1990 ◽  
Vol 206 ◽  
Author(s):  
Hai-Ping Cheng ◽  
R. Stephen Berry

ABSTRACTSurface melting on clusters is investigated by a combination of analytic modeling and computer simulation. Homogeneous, argon-like clusters bound by Lennard-Jones forces and Cu-like clusters bound by ‘embedded atom’ potentials are the systems considered. Molecular dynamics (MD) calculations have been carried out for clusters with 40–147 atoms. Well below the bulk melting temperature, the surfaces become very soft, exhibiting well-defined diffusion constants even while the cores remain nearly rigid and solid-like. The simulations, particularly animations, of atomic motion reveal that the surface melting is associated not with amorphous, random surface structures in constant, irregular motion, but rather in large-amplitude, organized, collective motion of most of the surface atoms accompanied by a few “floaters” and holes. At any time, a few of the surface atoms move out of the surface layer, leaving vacancies; these promoted particles wander diffusively, the holes also but less so, and occasionally exchange with atoms in the surface layer. This result is the basis for an analytic, statistical model. The caloric curves, particularly the latent heats, show that surface melting of clusters is a “phase change” different from the bulk melting of clusters.


2021 ◽  
Vol 54 (4) ◽  
pp. 1011-1022
Author(s):  
Kongyang Yi ◽  
Donghua Liu ◽  
Xiaosong Chen ◽  
Jun Yang ◽  
Dapeng Wei ◽  
...  

1998 ◽  
Vol 416 (1-2) ◽  
pp. 152-166 ◽  
Author(s):  
F. Nieto ◽  
C. Uebing ◽  
V. Pereyra

Sign in / Sign up

Export Citation Format

Share Document