Phase Stability and Diagrams from First Principles

1992 ◽  
Vol 291 ◽  
Author(s):  
J.M. Sanchez ◽  
J.D. Becker

ABSTRACTFirst principles theories of alloy phase equilibrium have been successfully used in recent years to compute temperature-composition phase diagrams for solid state phases. One particular approach, originating with the successful phenomenological Ising models to describe the alloy Hamiltonian, uses a cluster expansion of the configurational energy in terms of short-ranged pair and many-body interactions. The approach is deeply rooted in our ability to compute accurate total energies of relatively complex compounds, using density functional theory in the local approximation, from which effective interactions may be obtained. Fundamental aspects of the method which include convergence of the cluster expansion, treatment of the configurational entropy and description of vibrational modes are reviewed. Applications of the theory are given for binary alloys in the Ru-Zr-Nb system using the Linear Muffin Tin Orbital method for the total energy calculations, the Cluster Variation method for the description of the configurational entropy, and the Debye-Gruneisen approximation for the vibrational modes. The results are used to compute the equilibrium phase diagram for the Zr-Nb system and to assess current experimental data on phase stability in the Ru-Nb system. In the latter case, the calculations indicate that the DO19 structure is a likely candidate structure for the experimentally observed hexagonal-based compound Ru3Nb. Investigation of the energies and interactions of tetragonal structures as a function of the c/a ratio suggest the L10 structure as a likely candidate for the observed tetragonal phase near 1:1 stoichiometry.

2007 ◽  
Vol 26-28 ◽  
pp. 205-208
Author(s):  
Kinichi Masuda-Jindo ◽  
Vu Van Hung ◽  
P.E.A. Turchi

The thermodynamic properties of high temperature metals and alloys are studied using the statistical moment method, going beyond the quasi-harmonic approximations. Including the power moments of the atomic displacements up to the fourth order, the Helmholtz free energies and the related thermodynamic quantities are derived explicitly in closed analytic forms. The configurational entropy term is taken into account by using the tetrahedron cluster approximation of the cluster variation method (CVM). The energetics of the binary (Ta-W and Mo-Ta) alloys are treated within the framework of the first-principles TB-LMTO (tight-binding linear muffin tin orbital) method coupled to CPA (coherent potential approximation) and GPM (generalized perturbation method). The equilibrium phase diagrams are calculated for the refractory Ta-W and Mo-Ta bcc alloys.


1990 ◽  
Vol 186 ◽  
Author(s):  
J. Mikalopas ◽  
P.E.A. Turchi ◽  
M. Sluiter ◽  
P.A. Sterne

AbstractThe phase stability of fcc-based Ni-V substitutional alloys is investigated using linear muffin-tin orbitals total energy (LMTO) calculations. The method of Connolly and Williams (CWM) is used to extract many body interactions from the ground state energies of selected ordered configurations. These interactions are used in conjunction with the cluster variation method (CVM) to calculate the alloy phase diagram. The dependence of the interactions on the choice of configurations used to calculate them is examined.


1992 ◽  
Vol 278 ◽  
Author(s):  
Mark Asta ◽  
Didier De Fontaine ◽  
Mark Van Schilfgaarde ◽  
Marcel Sluiter ◽  
Michael Methfessel

AbstractIn this paper we present results of a first-principles phase stability study of fcc-based Ti-Al alloys. In particular, the full-potential linear muffin tin orbital method has been used to determine heats of formation and other zero-temperature properties of 9 fcc ordered superstructures as well as fcc and hcp Ti, and fcc Al. From these results a set of effective cluster interactions are determined which are used in a cluster variation method calculation of the thermodynamic properties and the composition-temperature phase diagram of fcc-based alloys.


1993 ◽  
Vol 8 (10) ◽  
pp. 2554-2568 ◽  
Author(s):  
Mark Asta ◽  
Didier de Fontaine ◽  
Mark van Schilfgaarde

Thermodynamic and structural properties of fcc- and hcp-based Ti–Al alloys are calculated from first-principles and are used to perform an ab initio study of phase stability for the intermetallic compounds in this system. The full potential linear muffin tin orbital method is used to determine heats of formation and other zero-temperature properties of 9 fcc- and 7 hcp-based intermetallic compounds, as well as of elemental fcc and hcp Ti and Al. From the results of these calculations, sets of effective cluster interactions are derived and are used in a cluster variation method calculation of the solid-state portion of the composition-temperature phase diagram for fcc- and hcp-based alloy phases. The results of our calculations are compared with those of experimental studies of stable and metastable phases in the Ti–Al system.


2019 ◽  
Vol 21 (30) ◽  
pp. 16818-16829 ◽  
Author(s):  
P. S. Ghosh ◽  
A. Arya

Formation energies of PuO2, α-Pu2O3 and sub-oxides PuO2−x (0.0 < x < 0.5) are determined using density functional theory employing generalised gradient approximation corrected with an effective Hubbard parameter.


2015 ◽  
Vol 775 ◽  
pp. 191-196
Author(s):  
Xiao Wei Lei ◽  
Yong Song ◽  
Kuo Yang ◽  
Hui Zhao

Using first principles approach, we present the structural, vibrational and dielectric properties of α-SiO2. The calculations have been carried out within the density functional perturbation theory and linear response formalism using the norm-concerving pseudopotentials and a plane wave basis. All the vibrational modes identified are in good agreement with experiment. The calculated infrared spectra are also in good agreement with available experimental results both for the positions and the intensities of the main peaks. We find that the modes Eu7 and A2u4 splits in two respectively at high hydrostaticpressures. Then we calculate the infrared spectra under high pressure of different orientations. The vibrational modes in different phase transitions are reported and discussed respectively.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550143 ◽  
Author(s):  
Leini Wang ◽  
Songjun Hou ◽  
Dewei Liang

In this paper, we employ first-principles methods based on electronic density functional theory (DFT) to investigate the phase stability, elastic and thermodynamic properties of Zr – Al binary substitutional alloys which are Zr 3 Al , Zr 2 Al , ZrAl , ZrAl 2 and ZrAl 3. By analyzing the elastic constants and enthalpy of formation, those phases both satisfy the generalized stability criteria and the results show that ZrAl 2 is the most stable. Due to high bulk modulus B, shear modulus G and Youngs modulus Y, ZrAl 2 also possesses excellent mechanical properties. Moreover, it is expected that there will be covalent bonding between Zr and Al atom in ZrAl 2 compound, which is confirmed by the electronic structure and the differences of charge density discussions. In the end, based on the calculated elastic modulus, the elastic wave velocity, Debye temperature ΘD and specific heat CV are discussed. As a result, ZrAl 3 possesses the highest Debye temperature and sound velocity, meaning a larger associated thermal conductivity and higher melting temperature.


Author(s):  
Christopher R. Weinberger ◽  
Gregory B. Thompson

The crystal structure and composition of the zeta phase in the group VB transition metal carbides are not completely understood despite decades of experimental studies. As such, the phase rarely appears on phase diagrams of the group VB transition metal carbides. There is currently renewed interest in this phase, as tantalum carbide composites exhibit high fracture toughness in the presence of this phase. This work extends the initial computational study using density functional theory of the phase stability of the zeta phase in the tantalum carbide system, where the tantalum carbide zeta-phase crystal structure and stability were determined, to the niobium and vanadium carbides. It is shown that the zeta phases in the three systems share the same crystal structure and it is an equilibrium phase at low temperatures. The carbon atom ordering in the three different phases is explored and it is demonstrated that the zeta phase in the tantalum carbides prefers to order carbon atoms differently than in the niobium and vanadium carbide zeta phases. Finally, the properties of this crystal are computed, including elastic constants, electronic densities of states and phonon dispersion curves, to illustrate that this crystal structure is similar to other transition metal carbides.


2020 ◽  
Vol 10 (10) ◽  
pp. 3417
Author(s):  
Alexander Landa ◽  
Per Söderlind ◽  
Amanda Wu

First-principles calculations within the density-functional-theory (DFT) approach are conducted in order to explore and explain the effect of small amounts of titanium on phase stability in the U-6Nb alloy. During rapid quenching from high to room temperature, metastable phases α′ (orthorhombic), α″ (monoclinic), and γ0 (tetragonal) can form, depending on Nb concentration. Important mechanical properties depend on the crystal structure and, therefore, an understanding of the effect of impurities on phase stability is essential. Insights on this issue are obtained from quantum-mechanical DFT calculations. The DFT framework does not rely on any material-specific assumptions and is therefore ideal for an unbiased investigation of the U-Nb system.


1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.


Sign in / Sign up

Export Citation Format

Share Document