Overview: High Speed Dynamics and Modelling as It Applies to Energetic Solids

1992 ◽  
Vol 296 ◽  
Author(s):  
J. Covino ◽  
S. A. Finnegan ◽  
O. E. R Heimdahl ◽  
A. J. Lindfors ◽  
J. K. Pringle

AbstractThis paper discusses experimental techniques and modelling tools used to characterize energetic solids subjected to dynamic deformation and shock. Critical experiments have been designed to study shock response and impact sensitivity of energetic materials. For example, a simplified two dimensional experiment has been developed to study the critical phenomena involved in delayed detonation reactions (XDT). In addition, wedge tests are used to obtain equation-of-state data. Coupled with hydrocodes, these experiments give us an in-depth understanding of the response of energetic materials subjected to shock loading. A coupled methodology using both experimental and modelling tools is presented. Consisting of three parts, it addresses all possible responses to fragment impact. The three parts are: (1) Fragment impact modelling (hydrocodes and empirically based codes); (2) Experiments to obtain accurate data for predicting prompt detonation; and (3) Tests with planar rocket motor models to explore mechanisms related to bum reaction thresholds and degree of violence. This methodology is currently being used in weapon design and munitions hazard assessments.

2006 ◽  
Vol 3-4 ◽  
pp. 383-390 ◽  
Author(s):  
Michael A. Sek ◽  
Vincent Rouillard

This paper presents some of the latest results of a research project aimed at using composite corrugated paperboard structures for protection of products against mechanical shocks and vibration during transportation and handling. Specifically, the behaviour of multi-layered corrugated paperboard (MCPB) under shock loading is investigated. Conventionally, packaging cushion design requires the determination of the maximum expected shock levels or equivalent drop which are usually determined from statistical analysis of original field measurements. With this approach, it is generally acknowledged that the cushioning element is engineered to provide adequate protection for statistically likely events but not for extreme events with low statistical likelihood. It is reluctantly accepted that, should it occur, the latter will result in damage to the product. MCPB can be formed with a broad range of compressive characteristics and with various proportions of elastic and plastic behaviour. The objective of this experimental investigation was to determine the optimum elastic/plastic proportion to extend the protective range to include large shock levels. The experimental results obtained include the effects of compression history on the stress-strain properties of MCPB as well as the behaviour of the material in both virgin and pre-compressed form under impulsive loads. The mechanism of deformation of the corrugations (flutes) was studied using high-speed video equipment. The complex acceleration signals produced during deformation of the composite corrugated paperboard cushions under shock loading were analysed by means of the shock response spectrum. Experiments have shown that inserting a sacrificial crumple element of virgin corrugated paperboard at the optimum contact area ratio dramatically lowers the overall level of the resulting shock response spectrum. This has the effect of increasing the allowable drop height for a limited number of extreme events. The main conclusion of the research is that MCPB in both virgin and pre-compressed forms can be combined to provide significantly enhanced protection to products against mechanical hazards during distribution.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avanish Mishra ◽  
Cody Kunka ◽  
Marco J. Echeverria ◽  
Rémi Dingreville ◽  
Avinash M. Dongare

AbstractDuring the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2550
Author(s):  
Yingchun Wang ◽  
Jinxu Liu ◽  
Min Yang ◽  
Lijuan Hou ◽  
Tingting Xu ◽  
...  

By evenly mixing polytetrafluoroethylene-silicon energetic materials (PTFE-Si EMs) with tin oxide (SnO2) particles, we demonstrate a direct synthesis of graphene-encapsulated SnO2 (Gr-SnO2) nanoparticles through the self-propagated exothermic reaction of the EMs. The highly exothermic reaction of the PTFE-Si EMs released a huge amount of heat that induced an instantaneous temperature rise at the reaction zone, and the rapid expansion of the gaseous SiF4 product provided a high-speed gas flow for dispersing the molten particles into finer nanoscale particles. Furthermore, the reaction of the PTFE-NPs with Si resulted in a simultaneous synthesis of graphene that encapsulated the SnO2 nanoparticles in order to form the core-shell nanostructure. As sodium storage material, the graphene-encapsulated SnO2 nanoparticles exhibit a good cycling performance, superior rate capability, and a high initial Coulombic efficiency of 85.3%. This proves the effectiveness of our approach for the scalable synthesis of core-shell-structured graphene-encapsulated nanomaterials.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950106
Author(s):  
Qian Dong ◽  
Bing Li

The hardware-based dictionary compression is widely adopted for high speed requirement of real-time data processing. Hash function helps to manage large dictionary to improve compression ratio but is prone to collisions, so some phrases in match search result are not true matches. This paper presents a novel match search approach called dual chaining hash refining, which can improve the efficiency of match search. From the experimental results, our method showed obvious advantage in compression speed compared with other approach that utilizes single hash function described in the previous publications.


2010 ◽  
Vol 638-642 ◽  
pp. 1059-1064
Author(s):  
Kunihito Nagayama ◽  
Yasuhito Mori

Polymer materials have widespread applications in various situations for structural materials by themselves as well as by combining with other materials such as carbon fiber. Some of them are also candidates for energetic materials in space applications.[1] Due to their general use, shock response of them has attracted attention for many researchers.[2-4] One of the striking characteristics of the dynamic response of them is that stress and/or particle velocity profile has a relaxation structure of s range.[5, 6]


Sign in / Sign up

Export Citation Format

Share Document