reaction thresholds
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natalia M. Schroeder ◽  
Antonella Panebianco

AbstractDrones are being increasingly used in research and recreation but without an adequate assessment of their potential impacts on wildlife. Particularly, the effect of sociability on behavioural responses to drone-associated disturbance remains largely unknown. Using an ungulate with complex social behaviour, we (1) assessed how social aggregation and offspring presence, along with flight plan characteristics, influence the probability of behavioural reaction and the flight distance of wild guanacos (Lama guanicoe) to the drone's approach, and (2) estimated reaction thresholds and flight heights that minimise disturbance. Sociability significantly affected behavioural responses. Large groups showed higher reaction probability and greater flight distances than smaller groups and solitary individuals, regardless of the presence of offspring. This suggests greater detection abilities in large groups, but we cannot rule out the influence of other features inherent to each social unit (e.g., territoriality) that might be working simultaneously. Low flight heights increased the probability of reaction, although the effect of drone speed was less clear. Reaction thresholds ranged from 154 m (solitary individuals) to 344 m (mixed groups), revealing that the responsiveness of this guanaco population to the drone is the most dramatic reported so far for a wild species.


2021 ◽  
Vol 118 (28) ◽  
pp. e2026378118
Author(s):  
Robert J. Burnside ◽  
Daniel Salliss ◽  
Nigel J. Collar ◽  
Paul M. Dolman

A fundamental issue in migration biology is how birds decide when to start their journey, given that arriving too early or too late in a variable environment reduces individual fitness. Internal circannual regulation and predictable cues such as photoperiod prepare birds for migration, while variable external cues such as temperature and wind are thought to fine-tune departure times; however, this has not been demonstrated at the key point at which an individual animal decides to start migrating. In theory, environmental cues correlated between departure and arrival sites allow informed departure decisions. For 48 satellite-tracked Asian houbara Chlamydotis macqueenii, a medium-distance migrant with climatic connectivity between wintering and breeding areas, each tracked across multiple years, spring departure was under individually consistent temperature conditions, with greater individual repeatability than for photoperiod or wind. Individuals occupied a range of wintering sites latitudinally spanning 1,200 km but departed at lower temperatures from more northerly latitudes. These individual departure decisions produced earlier mean population-level departure and arrival dates in warmer springs. Phenological adjustments were fully compensatory, because individuals arrived on the breeding grounds under similar temperature conditions each year. Individuals’ autumn departure decisions were also repeatable for temperature but less distinct than for spring, likely because of relaxed time constraints on leaving breeding grounds and the use of wind as a supplementary departure cue. We show that individual-level departure decisions informed by local temperatures can preadapt a population to adjust its population-level phenology in response to annual variability in spring temperatures without requiring genetic change in reaction thresholds.


2020 ◽  
Vol 7 (9) ◽  
Author(s):  
Daniel M Musher ◽  
Sirus J Jesudasen ◽  
Joseph W Barwatt ◽  
Daniel N Cohen ◽  
Benjamin J Moss ◽  
...  

Abstract Background Intensive studies have failed to identify an etiologic agent in >50% cases of community-acquired pneumonia (CAP). Bacterial pneumonia follows aspiration of recognized bacterial pathogens (RBPs) such as Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus after they have colonize the nasopharynx. We hypothesized that aspiration of normal respiratory flora (NRF) might also cause CAP. Methods We studied 120 patients hospitalized for CAP who provided a high-quality sputum specimen at, or soon after admission, using Gram stain, quantitative sputum culture, bacterial speciation by matrix-assisted laser desorption ionization time-of-flight, and viral polymerase chain reaction. Thresholds for diagnosis of bacterial infection were ≥105 colony-forming units (cfu)/mL sputum for RBPs and ≥106 cfu for NRF. Results Recognized bacterial pathogens were found in 68 of 120 (56.7%) patients; 14 (20.1%) of these had a coinfecting respiratory virus. Normal respiratory flora were found in 31 (25.8%) patients; 10 (32.2%) had a coinfecting respiratory virus. Infection by ≥2 RBPs occurred in 10 cases and by NRF together with RBPs in 13 cases. Among NRF, organisms identified as Streptococcus mitis, which share many genetic features of S pneumoniae, predominated. A respiratory virus alone was found in 16 of 120 (13.3%) patients. Overall, an etiologic diagnosis was established in 95.8% of cases. Conclusions Normal respiratory flora, with or without viral coinfection, appear to have caused one quarter of cases of CAP and may have played a contributory role in an additional 10.8% of cases caused by RBPs. An etiology for CAP was identified in >95% of patients who provided a high-quality sputum at, or soon after, the time of admission.


2020 ◽  
Vol 239 ◽  
pp. 01045
Author(s):  
M. Barbagallo ◽  
O. Aberle ◽  
V. Alcayne ◽  
S. Amaducci ◽  
J. Andrzejewski ◽  
...  

Although the 12C(n,p)12B and 12C(n,d)11B reactions are of interest in several fields of basic and applied Nuclear Physics the present knowledge of these two cross-sections is far from being accurate and reliable, with both evaluations and data showing sizable discrepancies. As part of the challenging n_TOF program on (n,cp) nuclear reactions study, the energy differential cross-sections of the 12C(n,p)12B and 12C(n,d)11 B reactions have been measured at CERN from the reaction thresholds up to 30 MeV neutron energy. Both measurements have been recently performed at the long flight-path (185 m) experimental area of the n_TOF facility at CERN using a pure (99.95%) rigid graphite target and two silicon telescopes. In this paper an overview of the experiment is presented together with a few preliminary results.


2018 ◽  
Vol 141 (2) ◽  
pp. AB249
Author(s):  
Noémie Paradis ◽  
Béatrice Paradis ◽  
Louis P. Paradis ◽  
Francois Graham ◽  
Jonathan Lacombe Barrios ◽  
...  

2017 ◽  
Vol 57 (sup1) ◽  
pp. S51-S60 ◽  
Author(s):  
Chantal Laroche ◽  
Christian Giguère ◽  
Véronique Vaillancourt ◽  
Karine Roy ◽  
Louis-Philippe Pageot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document