Dual Role of Tin Reaction Barrier in Gold-Based Metallization to GaAs

1993 ◽  
Vol 300 ◽  
Author(s):  
A. Piotrowska ◽  
E. Kaminska ◽  
M. Guziewicz ◽  
S. Kwiatkowski ◽  
A. Turos

ABSTRACTThe formation of ohmic contacts to p-GaAs based on Au-Zn system comprising a TiN diffusion barrier has been investigated using 2 MeV He+ RBS and the specific contact resistance measurements. It has been proved that TiN films deposited by reactive RF bias magnetron sputtering serves two purposes. First it suppresses the arsenic evaporation and thus confines the reaction between AuZn and GaAs. Second, it prevents intermixing between p-GaAs/Au(Zn) ohmic contact and an overlayer of Au.

1997 ◽  
Vol 482 ◽  
Author(s):  
Ja-Soon Jang ◽  
Hyo-Gun Kim ◽  
Kyung-Hyun Park ◽  
Chang-Sub Um ◽  
Il-Ki Han ◽  
...  

AbstractWe report a new Ni/Pt/Au (20/30/80 nm) metallization scheme to achieve a low ohmic contacts to p-type GaN with a carrier concentration of 9.4 × 1016 cm-3. A Mg-doped GaN layer (0.5 μm) was grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). All metal thin films were deposited on the p-GaN layer in an electron-beam evaporation system. Samples were annealed by a rapid thermal annealing (RTA) process at a range of temperatures from 300 °C to 850 °C under a flowing Ar atmosphere. A circulartransmission line model (c-TLM) was employed to calculate the specific contact resistance, and current-voltage (I-V) data were measured with HP4155A. The Ni/Pt/Au contacts without the annealing process showed nearly rectifying characteristics. The ohmic contacts were formed on the samples annealed at 500 °C for 30 sec and the I-V data showed a linear behavior. The specific contact resistance was 2.1 × 10-2 Ωcm2. However with increasing the annealing temperature above 600 °C, ohmic contacts were again degraded. Auger electron spectroscopy (AES) depth profiles were used to investigate the interfacial reactions between the trilayer and GaN. AES results suggested that Pt plays a significant role in forming ohmic contact as an acceptor at the interface. Atomic force microscope (AFM) also showed that the samples with good ohmic contact have very smooth surface.


2017 ◽  
Vol 30 (3) ◽  
pp. 313-326 ◽  
Author(s):  
Anthony Holland ◽  
Yue Pan ◽  
Mohammad Alnassar ◽  
Stanley Luong

Though the transport of charge carriers across a metal-semiconductor ohmic interface is a complex process in the realm of electron wave mechanics, such an interface is practically characterised by its specific contact resistance. Error correction has been a major concern in regard to specific contact resistance test structures and investigations by finite element modeling demonstrate that test structures utilising circular contacts can be more reliable than those designed to have square shaped contacts as test contacts become necessarily smaller. Finite element modeling software NASTRAN can be used effectively for designing and modeling ohmic contact test structures and can be used to show that circular contacts are efficient in minimising error in determining specific contact resistance from such test structures. Full semiconductor modeling software is expensive and for ohmic contact investigations is not required when the approach used is to investigate test structures considering the ohmic interface as effectively resistive.


2018 ◽  
Vol 924 ◽  
pp. 397-400
Author(s):  
Moonkyong Na ◽  
In Ho Kang ◽  
Jeong Hyun Moon ◽  
Wook Bahng

Nickel (Ni) is the most widely used metal for the formation of ohmic contact on n-type SiC. However, the irregular contact can potentially cause degradation in the device performance. To form the uniform ohmic interface, titanium (Ti) was applied as a barrier layer. Ni/Ti/SiC and Ti/Ni/SiC contact metal structures were prepared, and ohmic contacts were formed using a rapid thermal annealing process. The interfacial properties of both contact metal structures were enhanced by applying the Ti layer. The specific contact resistance of ohmic contacts showed a slightly lower or similar value (~ low 105 Ωcm2) compared with the specific contact resistance values formed from only the Ni contact metal.


1993 ◽  
Vol 318 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
Patrick W. Leech ◽  
H. Barry Harrison

ABSTRACTThis paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance of a planar ohmic contact. It is proposed that in the case of a typical Au-Ge-Ni alloyed ohmic contact, a more realistic model would need to take into account the presence of the alloyed layer at the metal-semiconductor interface. An alternative is described which is based on three contact layers and the two interfaces between them, thus forming a Tri-Layer Transmission Line Model (TLTLM). Expressions are given for the contact resistance Rc and the contact end resistance Re of this structure, together with a current division factor, f. Values for the parameters of this model are inferred from experimentally reported values of Rc and Re for two types of contact.


MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1931-1935
Author(s):  
V. Mortet ◽  
A. Taylor ◽  
M. Davydova ◽  
L. Fekete ◽  
Z. Vlčková Živcová ◽  
...  

ABSTRACTWith a high affinity to carbon comparable to titanium and an electrically conductive carbide, zirconium has potential to form ohmic contact on boron doped diamond. In this work, formation of ohmic contacts on boron doped diamond using zirconium is studied in comparison to titanium. Boron doped diamond epitaxial layers have been grown by microwave plasma enhanced chemical vapour deposition with various B/C ratio. Circular Transmission Line Model structures were fabricated using standard micro-fabrication technologies. Specific contact resistance of fabricated contacts was determined for different boron concentrations and for various annealing temperatures. Ohmic contacts using zirconium are formed after annealing at 400 °C. Specific contact resistance steadily decreases with high temperature annealing down to a value of ca. 1 mΩ.cm2 after annealing at 700 °C for highly boron doped diamond. In comparison, titanium contact fabricated on highly doped diamond appears not stable under high temperature annealing.


1990 ◽  
Vol 181 ◽  
Author(s):  
F. Ren ◽  
S. J. Pearton ◽  
W. S. Hobson ◽  
T. R. Fullowan ◽  
A. B. Emerson ◽  
...  

ABSTRACTThe use of AuBe-In/Ag/Au p-ohmic contacts for the base layer of GaAs-AIGaAs heterojunction bipolar transistors (HBTs) is described. Annealing at 420°C for 20 sec produces a contact resistivity of 0.095 Ω mm and a specific contact resistance of l.5 × 10-7 Ω cm2, and the surface morphology of the contact is excellent. The role of the silver is as a diffusion barrier to prevent Au spiking into the base layer which could degrade the HBT performance. The presence of the In layer is highly desirable in order to reduce the contact resistance, probably by forming an InGaAs phase at the metal-GaAs interface. Beryllium acts as the p-type dopant, and the top Au layer is used to lower the contact sheet resistance. Current transport through the structure is dominated by tunneling through the barrier due to field emission in the highly doped base layer at p-type doping levels above ∼1019 cm−3


2016 ◽  
Vol 858 ◽  
pp. 553-556 ◽  
Author(s):  
Tony Abi-Tannous ◽  
Maher Soueidan ◽  
Gabriel Ferro ◽  
Mihai Lazar ◽  
Christophe Raynaud ◽  
...  

In this study, the electrical properties of Ti3SiC2 based ohmic contacts formed on p-type 4H-SiC(0001) 4°-off substrates were studied. The Ti3SiC2 thin films were grown by thermal annealing (from 900°C to 1200°C) of Ti50Al50 layer deposited by magnetron sputtering. XRD analyzes were performed on the samples to further investigate the compounds formed after annealing. Using TLM structures, the Specific Contact Resistance (SCR) at room temperature of all contacts was measured. The temperature dependence (up to 600°C) of the SCR was studied to understand the current mechanisms at the interface and to determine the barrier height value by fitting the experimental results using the thermionic field emission theory. Aging tests showed that Ti3SiC2 based contacts were stable up to 200h at 600°C under Ar.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


2007 ◽  
Vol 556-557 ◽  
pp. 1027-1030 ◽  
Author(s):  
Ferdinando Iucolano ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
A. Alberti ◽  
Vito Raineri

In this work, the structural and electrical properties of Ti/Al/Ni/Au contacts on n-type Gallium Nitride were studied. An ohmic behaviour was observed after annealing above 700°C. The structural analysis showed the formation of an interfacial TiN layer and different phases in the reacted layer (AlNi, AlAu4, Al2Au) upon annealing. The temperature dependence of the specific contact resistance demonstrated that the current transport occurs through thermoionic field emission in the contacts annealed at 600°C, and field emission after annealing at higher temperatures. By fitting the data with theoretical models, a reduction of the Schottky barrier from 1.21eV after annealing at 600°C to 0.81eV at 800°C was demonstrated, together with a strong increase of the carrier concentration at the interface. The reduction of the contact resistance upon annealing was discussed by correlating the structural and electrical characteristics of the contacts.


1996 ◽  
Vol 427 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison ◽  
Patrick W. Leech

AbstractThe continual trend in decreasing the dimensions of semiconductor devices results in a number of technological problems. One of the more significant of these is the increase in contact resistance, Rc. In order to understand and counteract this increase, Rc needs to be quantitatively modelled as a function of the geometrical and material properties of the contact. However the use of multiple semiconductor layers for ohmic contacts makes the modelling and calculation of Rc a more difficult problem. In this paper, a Tri-Layer Transmission Line Model (TLTLM) is used to analyse a MOSFET ohmic contact and gatedrain region. A quantitative assessment of the influence on Rc of important contact parameters such as the metal-silicide specific contact resistance, the silicide-silicon specific contact resistance and the gate-drain length can thus be made. The paper further describes some of the problems that may be encountered in defining Rc when the dimensions of certain types of contact found in planar devices decrease.


Sign in / Sign up

Export Citation Format

Share Document