Surface Reactivity of Silicon and Germanium in CF4 -O2 Reactive Ion Etching

1993 ◽  
Vol 324 ◽  
Author(s):  
Christophe Cardinaud ◽  
A. Campo ◽  
G. Turban

AbstractReactive ion etching of silicon and germanium in CF4 -O2 was investigated. Above 20% O2 germanium etching is selective with respect to silicon. In agreement with the evolution of the fluorine and oxygen concentration in the plasma and of the etch products formation rate, surface analysis reveals that the growth of a SiOxFy layer slows down the silicon etching whereas the formation of GeOxFy does not inhibit germanium etching. Using a simple kinetic model, the silicon and germanium reactivity and its dependency with respect to the plasma composition are expressed in function of the experimental data. Results suggest that surface composition controls silicon etching, whereas germanium etching depends only on the fluorine flux on the surface.

1998 ◽  
Vol 512 ◽  
Author(s):  
N. Medelci ◽  
A. Tempez ◽  
E. Kim ◽  
N. Badi ◽  
D. Starikov ◽  
...  

ABSTRACTBoron nitride (BN) and gallium nitride (GaN) are known as superior semiconductor materials for high power and high temperature applications. Undoped BN layers grown using ion beam and electron cyclotron resonance (ECR) assisted physical deposition on conductive GaN films have demonstrated good insulating properties. These films are thus good candidates as thin insulating layers in high temperature GaN-based device structures such as MIS diodes and MISFETs due to their close thermal expansion coefficient. In order to address the device processing issue, reactive ion etching (RIE) tests were performed on these films. Using Cl2/Ar chemistry, etch rates up to 600 Å/min were measured. These rates were found to increase linearly with increasing rf power and Cl2 flow rate. GaN layers grown by gas source MBE were also dry etched, resulting in smooth sidewalls. Etch rates up to 1,400 Å/min were achieved at 200 W rf power (-280 V d.c. bias) in a BCl3/Cl2/Ar chemistry; this is the highest RIE rate reported up to now for GaN. Using Cl2/Ar and BCl3/Cl2/Ar for BN and GaN respectively, etch selectivities in excess of 5:1 can be obtained. Finally, preliminary Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) results on residue deposition and surface composition changes as a function of the different etch conditions are presented.


1999 ◽  
Vol 596 ◽  
Author(s):  
Jun Hee Cho ◽  
Il Young Kwon ◽  
Chanro Park ◽  
Chang Ju Choi ◽  
Yeo Song Seol ◽  
...  

AbstractThe effects of reactive ion etching damage on the electrical properties of Pt/SBT/Pt capacitors have been investigated. The plasma treated SBT/Pt layers showed a significant decrease in remanent polarization compared with that of the reference sample. The remanent polarization of the plasma treated layers varied with the gas ratios of the Cl2/Ar plasma. XPS analysis of the plasma treated SBT/Pt samples showed that the surface composition was significantly changed as the gas ratios were varied, which resulted in a polarization decrease in the plasma treated samples. Plasma treatment also caused a voltage shift of the hysteresis loops along the voltage axis. The magnitude of the voltage shift was increased for the chlorine-rich plasma. The results of surface analysis revealed that the voltage shift is caused by oxygen deficiency at the SBT surface. Based on our experimental results, reactive ion etching damage was explained in terms of physical and electrical effects of the plasma on the electrical properties of the ferroelectric Pt/SBT/Pt capacitors.


1996 ◽  
Author(s):  
George F. McLane ◽  
Paul Cooke ◽  
Robert P. Moerkirk

2020 ◽  
Vol 54 (6) ◽  
pp. 672-676
Author(s):  
L. K. Markov ◽  
I. P. Smirnova ◽  
M. V. Kukushkin ◽  
A. S. Pavluchenko

1988 ◽  
Vol 24 (13) ◽  
pp. 798 ◽  
Author(s):  
T. Matsui ◽  
H. Sugimoto ◽  
T. Ohishi ◽  
H. Ogata

1989 ◽  
Vol 25 (15) ◽  
pp. 954 ◽  
Author(s):  
T. Matsui ◽  
H. Sugimoto ◽  
K. Ohtsuka ◽  
Y. Abe ◽  
H. Ogata

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


Sign in / Sign up

Export Citation Format

Share Document